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ABSTRACT

The 4.5 km long near-Earth asteroid 4179 Toutatis has made close Earth flybys approximately every four years
between 1992 and 2012, and has been observed with high-resolution radar imaging during each approach. Its
most recent Earth flyby in 2012 December was observed extensively at the Goldstone and Very Large Array radar
telescopes. In this paper, Toutatis’ spin state dynamics are estimated from observations of five flybys between 1992
and 2008. Observations were used to fit Toutatis’ spin state dynamics in a least-squares sense, with the solar and
terrestrial tidal torques incorporated in the dynamical model. The estimated parameters are Toutatis’ Euler angles,
angular velocity, moments of inertia, and the center-of-mass–center-of-figure offset. The spin state dynamics as
well as the uncertainties of the Euler angles and angular velocity of the converged solution are then propagated
to 2012 December in order to compare the dynamical model to the most recent Toutatis observations. The same
technique of rotational dynamics estimation can be applied to any other tumbling body, given sufficiently accurate
observations.

Key words: minor planets, asteroids: individual (Toutatis) – planets and satellites: dynamical evolution and
stability – planets and satellites: interiors

1. INTRODUCTION

The 4.5 km long near-Earth asteroid 4179 Toutatis (hereafter
Toutatis) is close to a 4:1 orbital resonance with the Earth,
and has made six close Earth flybys since its discovery in
1989 (Ostro et al. 1999). The first radar imaging campaigns of
Toutatis in 1992 and 1996 were led by Ostro and Hudson with
the Arecibo Planetary Radar and the Goldstone Solar System
Radar, and their results revealed a tumbling, non-principal axis
(NPA) rotator with a two-lobed shape (Ostro et al. 1995, 1999;
Hudson & Ostro 1995, 1998; Hudson et al. 2003; Spencer et al.
1995), as shown in Figure 1.

Hudson & Ostro (1995) discussed that Toutatis’ tumbling
rotation could be described as a 5.41 day spin period around its
long axis with a precession period of 7.35 days around the
asteroid’s angular momentum vector. Scheeres et al. (2000)
showed that Toutatis’ current NPA spin state is consistent
with the history of close flybys between the asteroid and the
Earth. This NPA rotation mode becomes an advantage when
estimating, or at least constraining, the internal mass distribution
of the body. The NPA rotation mode is a complex function of
the initial spin state (i.e., orientation and angular velocity) and
moments of inertia. The moments of inertia are functions of
the mass distribution of the body, so their values put a strong
constraint on the mass and density distribution of the body.
Such a constraint cannot be enforced on a principal-axis rotator
simply by looking at its rotation mode, as its spin state only
depends on the rotation axis and the rotation period. That is, its
rotational dynamics do not depend on the mass distribution.

In this paper, Toutatis’ moment of inertia ratios are estimated
using the radar images captured with the Arecibo Planetary
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Radar and the Goldstone Solar System Radar from 1992
to 2008. These observations are fit in a least-squares sense
to accurately model the rotational dynamics, incorporating
solar and terrestrial tidal torques. Specifically, Euler angles,
angular velocity, moment of inertia ratios, and the center-
of-mass–center-of-figure (COM-COF) offset of the body are
included in the state vector to be estimated. It is of particular
interest to estimate the moment of inertia ratios (i.e., Iij /Izz,
which is the ratio of the ij component of the inertia tensor to
Izz) and the COM-COF offset, as these values constrain the
internal density distribution of the body. Our estimation of
these parameters was performed prior to the 2012 December
apparition, and predictions from our model are compared with
the actual data collected then.

The results show that Toutatis’ moment of inertia ratios
are known to within a few percent, and Toutatis’ predicted
orientation fits the actual 2012 observations within the formal
uncertainty of 20–30 deg for each of the 3-1-3 Euler angles.
This is the first time that an Earth-crossing asteroid’s spin state
has been estimated to this precision from ground observations.
The Toutatis shape model is being updated with the most recent
radar images, and the estimated moment of inertia ratios and the
COM-COF offset will be used to constrain the internal density
distribution of the body in the future.

2. ROTATIONAL DYNAMICS

The motion of a rotating rigid body is reviewed in this section.
Most of the equations are discussed in detail by Schaub &
Junkins (2009), and only the key equations are presented here.

2.1. Euler Angles

An inertial frame and a body-fixed frame can be related via
the rotation matrix composed of the 3-1-3 Euler angles α=
(α, β, γ ), as shown in Figure 2.

The body frame is obtained by rotating the body z-axis by
α, then the body x-axis by β, and finally the body z-axis by γ ,
all measured positive in the counterclockwise direction when
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Figure 1. Toutatis shape model, refined from that of Hudson et al. (2003)
and viewed from along its principal axes. The x-, y-, and z-axes are the long,
intermediate, and short principal axes, respectively. The model is based on the
1992–2008 images only.

looking down into the axis of rotation. Using the Euler angles,
the rotation matrix [BN ] that maps a vector from the inertial
frame to the body frame is given as

[BN ] = R3,γ · R1,β · R3,α, (1)

where R is the rotation matrix with the subscript indicating the
axis of rotation (i.e., x → 1, y → 2, and z → 3) and the angle
of rotation (θ ) as follows:

R1,θ =
[

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

]
; (2)

R3,θ =
[

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

]
. (3)

Thus, the Euler angles are direct measures of the orientation
of a rigid body in the inertial frame, which motivates expressing
their dynamical equations in order to relate a set of Euler angles
at one epoch to that at another. Without proof, the time derivative
of the 3-1-3 Euler angles, α, is given by the following equation:

α̇ = 1

sin β

[
sin γ cos γ 0

cos γ sin β − sin γ sin β 0
− sin γ cos β − cos γ cos β sin β

]

× ωB = [C(α)]ωB, (4)

where ω is the angular velocity. Note that the angular velocity
must be expressed in the body frame, as indicated by the B
subscript. Equation (4) suffers a singularity when β = 0 deg or
180 deg because the first and third rotation axes are aligned in
these two cases. These conditions were never encountered for
the whole duration of Toutatis’ rotational dynamics propagation.

x̂N

ŷN

ẑN

α βγ

ẑB
ŷB

x̂B

Figure 2. Euler Angles and inertia/body coordinate frames. The N subscript is
used for the inertial coordinate frame and the B subscript for the body coordinate
frame, both of which are defined by a set of three orthonormal, right-handed
vectors x̂, ŷ, and ẑ.

The rotation matrix [BN ] becomes useful when computing
the torques due to the Earth and Sun, as the orbit of a planet
is generally expressed in the inertial frame but the torque
computation must be performed in the body frame. The torque
computation and orbit propagation method are discussed in
Sections 2.3 and 3, respectively.

2.2. Angular Velocity

The time derivative of the angular velocity is computed by
Euler’s equation. In order to derive the equation, the angular
momentum around the center of mass is defined as

HCM = ICMωCM, (5)

where the inertia tensor ICM is a constant, symmetric [3 × 3]
tensor in the body frame and can be defined by six independent
quantities. Then, the rate of change of the angular momentum
around the center of mass in the body frame is related to the
torque (LB,CM) acting on the system as follows:

ḢB,CM = IB,CMω̇B,CM + [ω̃B,CM]IB,CMωB,CM = LB,CM,

(6)

where the tilde denotes the cross-product operator defined as

[ω̃] =
[

0 −ω3 ω2
ω3 0 −ω1

−ω2 ω1 0

]
. (7)

By rearranging Equation (6), Euler’s equation is obtained:

ω̇B,CM = I−1
B,CM(−[ω̃B,CM]IB,CMωB,CM + LB,CM). (8)

The computation of the external torque is discussed in the
next section.

2.3. External Torque

The external torque LB,CM in the body frame about the center
of mass of a rigid body due to an external spherical mass can be
modeled as

LB,CM = −Ms r × ∂U

∂ r
, (9)

where

U = G

∫
M

dm(r ′)
|r − r ′| . (10)
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In Equation (9), U is the potential due to the rigid body, M
is the mass of the rigid body, Ms is the mass of the spherical
body, r is the position of the spherical body relative to the rigid
body, and the prime is used to denote the quantities of a mass
element (dm) within the rigid body. Thus, in order to compute
the external torque properly, it is necessary to know the gravity
field of the rigid body (i.e., density distribution) and the relative
position between the rigid body and the sphere. The computation
of the relative position is deferred to Section 3, and the potential
expression is studied in this section.

The gravity potential in Equation (10) is expressed in the
spherical harmonic expansion as

U = GM∗

R∗

∞∑
n=0

n∑
m=0

(
R∗

r

)n+1

Pnm(sin φ)

·
[

cos(mλ)
sin(mλ)

]
·
[
Cnm

Snm

]
, (11)

where G is the gravitational constant, M∗ and R∗ are the
reference mass and reference radius, Pnm is the associated
Legendre function of degree n and order m, φ and λ are the
latitude and longitude of the spherical body in the body frame,
and C and S are the spherical harmonic coefficients defined as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cnm = (2 − δ0,m)

M∗
(n − m)!

(n + m)!

∫
M

(
r ′

R∗

)n

×Pnm(sin φ′) cos(mλ′)dm′,

Snm
m>0= 2

M∗
(n − m)!

(n + m)!

∫
M

(
r ′

R∗

)n

×Pnm(sin φ′) sin(mλ′)dm′,

(12)

where δ is the Kronecker delta function. By direct expansion,
the first- and second-degree spherical harmonic coefficients are
shown to be functions of the COM-COF offset and the moments
of inertia as follows: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

R∗C11 = xCM,

R∗S11 = yCM,

R∗C10 = zCM;
(13)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C20 = 1

2M∗(R∗)2
(Ixx + Iyy − 2Izz),

C21 = − 1

M∗(R∗)2
Ixz,

C22 = 1

4M∗(R∗)2
(Iyy − Ixx),

S21 = − 1

M∗(R∗)2
Iyz,

S22 = − 1

2M∗(R∗)2
Ixy.

(14)

Thus, as shown in Equation (9), the COM-COF offset and
the moment of inertia ratios give rise to the perturbations by the

external torques through the first- and second-degree gravity co-
efficients. In so many words, the observations (i.e., Euler angles
discussed in Section 4) are related to the rotational dynamics
in Equation (8), enabling one to process their information to
estimate the COM-COF offset and the moment of inertia ratios.
Only a [2×2] gravity field is used to compute the terrestrial and
solar tidal torques, as the third-degree gravity perturbations are
proven to be negligible in the preliminary analysis.

Now that the general torque computation is discussed, the
gravity potential and acceleration of the first- and second-degree
spherical harmonic coefficients can be solved explicitly. The
first-degree potential is expressed as

U1 = GM∗

r3
r · rCM, (15)

which yields

∂U1

∂ r
= GM∗

r3
[1[3×3] − 3r̂ r̂] · rCM

= GM∗R∗

r3
[1[3×3] − 3r̂ r̂] ·

[
C11
S11
C10

]
. (16)

Thus, the acceleration due to the COM-COF offset is a linear
function of itself. Substitution of Equation (16) into Equation (9)
yields the torque due to the first-degree spherical harmonic
coefficients as

L1 = −Ms r × ∂U1

∂ r
= −GM∗Ms

r3
[r̃] · rCM

= −GM∗MsR
∗

r3
[r̃] ·

[
C11
S11
C10

]
. (17)

In addition, the second-degree potential is defined as

U2 = G

2r3
IT − 3G

2r5
r · [I ] · r, (18)

where IT is the trace of the inertia tensor. Note that r · [I ] · r
is tensorial notation, which yields a scalar and should not be
confused with the dot product of vectors. Then, the acceleration
due to the second-degree potential becomes

∂U2

∂ r
= − 3G

2r5
IT r +

15G

2r7
(r · [I ] · r) r − 3G

r5
[I ]r, (19)

which yields

L2 = 3GMs

r5
[r̃][I ]r. (20)

Significant external torques on Toutatis are exerted by both the
Earth and Sun. These separate contributions must be summed
together.

3. TOUTATIS’ ORBIT

Toutatis is nearly in a 4:1 resonance with the Earth, in an
eccentric, low-inclination orbit. Figure 3 shows the heliocentric
orbit of Toutatis (black) and Earth (gray) in the inertial J2000
frame.

The observations, to be discussed in the next section, were
taken between 1992 and 2012 during either the inbound or out-
bound leg of the Earth crossings. Table 1 shows the observation
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Figure 3. Toutatis’ orbit. The semi-major axis is a = 2.53 [AU], the eccentricity
is e = 0.629 (n.d.), and the inclination is i = 0.446 (deg).

epochs and the minimum distance from the Earth to Toutatis
during these periods.

Toutatis’ closest approach to Earth since its discovery oc-
curred during the 2004 flyby, at a distance of four lunar dis-
tances, and the recent flyby in 2012 December will be the closest
Earth encounter between then and 2069. During the outbound
leg of the 2012 December flyby, Toutatis was imaged by the
Chinese Chang’e 2 spacecraft, a lunar probe that departed from
the Earth–Moon L2 Lagrange point to fly by Toutatis as an ex-
tended mission. This was the first time that a near-Earth asteroid
has flown by a spacecraft while making a flyby of Earth.

As shown in Figure 3, the Earth apparition nearly coincides
with the perihelion passage when the torque due to the solar
tide becomes the greatest. In order to illustrate the significance
of the Earth flybys and solar tidal torque on the change in the
rotation dynamics of the asteroid, Figure 4 shows the signed
change in the magnitude of the angular momentum, normalized
by the initial angular momentum magnitude at a reference epoch
in 1992.

Figure 4 shows that the solar tide exerts a strong torque around
perihelion passage, and the terrestrial tidal torques further
change the rotation dynamics of Toutatis (0.1% change in the
magnitude of the angular momentum in 20 yr). The terrestrial
tide is significant only during each Earth flyby, so the dynamical
model only includes it from one month before until one month
after each flyby epoch. The solar tide is active at all times,
and tides from the Moon are proven to be negligible (≈1%
of the terrestrial tides). Although the magnitude of the angular

Table 1
Observation Epochs and Earth–Toutatis Distance

Year Month Dmin (Lunar Distance)

1992 November 9.40

1996 November 13.79

2000 October 28.75

2004 September 4.03

2008 November 19.56

2012 December 18.03

momentum is relatively constant between each Earth flyby, there
are small oscillations due to the solar tide that lead to significant
orientation offsets. The 2004 apparition is by far the strongest
perturbation from the terrestrial tides, as indicated by a large
change in the magnitude of the angular momentum.

Not only the rotation dynamics, but also Toutatis’ orbit
changes due to perturbations after every Earth flyby and during
the course of its heliocentric orbit, which prohibits one from
using simple two-body dynamics in the heliocentric frame.
Therefore, Toutatis’ orbit was retrieved from the JPL Horizons
system (http://ssd.jpl.nasa.gov/?horizons). The relative position
of Toutatis with respect to Earth was obtained in 30 minute
increments, and that of Toutatis with respect to the Sun was
obtained in one-day increments. The terrestrial torques were
computed by linearly interpolating Toutatis’ position in the
inertial frame. For the solar tidal torque, a more accurate
interpolation method, the f –g series (Danby 1962, chapter 6.7),
was employed due to the large time interval in order to lower
the position errors to less than ∼10 [m].

4. OBSERVATIONS

The fundamental observational data used in our estimation
were obtained by correlating radar images of Toutatis to the
existing shape model. For example, Figure 5 shows the delay-
Doppler radar images of Toutatis from Goldstone in 2000 and
Arecibo in 2004 and 2008.

Within each image in Figure 5, time delay, equivalent to dis-
tance from the Earth, increases from top to bottom, and Doppler
frequency, equivalent to line-of-sight velocity, increases from
left to right. These images have a total range extent of 5 km,
and a range resolution of 18.75 m pixel−1 at Goldstone and
15 m pixel−1 at Arecibo. The Doppler extents of the images
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Figure 4. Change in Toutatis’ rotational angular momentum magnitude H over time.
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Figure 5. Delay-Doppler radar images of Toutatis from Goldstone in 2000 and
Arecibo in 2004 and 2008.

vary; Doppler resolution was 0.033 Hz at Goldstone, 0.011 Hz
at Arecibo in 2004, and 0.019 Hz at Arecibo in 2008. In this
projection, Toutatis appears to rotate counterclockwise, but be-
cause of the asteroid’s slow rotation, there is little rotation smear
during the imaging during each day. The Goldstone images have
low signal-to-noise ratios because of the greater distance to the
asteroid in 2000 and the relatively low sensitivity of the tele-
scope as compared to Arecibo.

Using these radar images, the 3-1-3 Euler angles, along
with the body frame angular velocity, were estimated at each
observation epoch. All observations are listed in Table 3 in
Appendix A.2. There are varying numbers of observations for
each apparition, totaling 17 observations in 1992, 8 observations
in 1996, 2 observations in 2000, 4 observations in 2004, and
2 observations in 2008. Uncertainties have been omitted for
brevity, but range between 3 deg and 15 deg for Euler angles and
between 2 deg day−1 and 10 deg day−1 for components of the
instantaneous spin vectors. These observations were processed
by the filter (Section 5) to estimate the rotational dynamics and
relevant physical parameters of Toutatis. Another example of
the radar images is presented in Figure 6.

Figure 6 shows the predicted orientation of Toutatis on 2008
November 23 using the best-fit torque-free spin state for the
2000–2004 images (left) compared to the observed orientation
(center). The ∼100 deg offset in the asteroid’s orientation is due
to the tidal torques, primarily from the Earth during the 2004
flyby. Including the terrestrial torque resolves the discrepancy
(right). Insets show the orientation of the Toutatis shape model
projected onto the plane of the sky for the two spin state models.
Arecibo viewed Toutatis nearly end-on, with the smaller lobe
closer to Earth. The observed and modeled radar images are
oriented as in Figure 5.

5. LEAST-SQUARES FILTER

All of the 1992–2008 Euler angle observations were fit in
a least-squares sense incorporating both terrestrial and solar
tidal torques. For this purpose, a batch filter with a square-root
information filter algorithm was implemented, and observations
were processed with respect to the epoch (i.e., t0) to get the best
estimates of the epoch state. The estimated quantities are the
initial Euler angles, angular velocity, moment of inertia ratios,
and a potential COM-COF offset. This section briefly reviews
the filter equations for the least-squares batch filter. Most of the

Figure 6. Predicted orientation of Toutatis on 2008 November 23.

equations in this section are well documented by Tapley et al.
(2004), and only the key steps are highlighted.

5.1. Dynamical Equations

For a state vector X that is an array of estimated parameters,
we have the dynamical equation Ẋ and observation Y :

Ẋ = F (X, t); (21)

Y k = Z(Xk, tk) + εk, (22)

where F is the dynamical equation that computes the time
derivative of the state vector, Z is the observation model, ε is the
observation error, and k is the index of the time t. As mentioned
above, the state vector consists of the 3-1-3 Euler angles, angular
velocity, moment of inertia ratios, and COM-COF offset:

X = [α ωB Ī r̄], (23)

where α is the 3-1-3 Euler angles in a vector form, ω is the
angular velocity with the B subscript indicating the body frame
notation, Ī is an array of moment of inertia ratios, and r̄ is the
COM-COF offset. As the dynamical equation is non-linear for a
rotating rigid body, it is only possible to estimate the corrections
to the full state. Assuming that the dynamics of the reference
state stays sufficiently close to the true state over the period of
data arc, Equations (21) and (22) can be expanded in a first-order
Taylor series to yield

ẋ(t) = A(t)x(t); (24)

yk = H̃k xk + εk. (25)

This process is often called the “linearization” of the dy-
namical and observable equations. In Equations (24) and (25),
lowercase letters are used to denote the deviations of the full
state, A is the dynamics matrix, and H̃ is the observation partial
given as

A(t) = ∂F (t)

∂ X(t)

∣∣∣∣
X=X∗

; (26)

H̃k = ∂Z

∂ X

∣∣∣∣
X=X∗(tk)

, (27)

where X∗ is the reference state. Thus, both the dynamics
matrix and the observation partial are computed on the reference
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trajectory, and the state deviation follows the dynamics dictated
by Equation (26). As the observables are the 3-1-3 Euler angles,
the observation partial yields a simple form:

H̃k = [1[3×3] 0[3×11]]. (28)

Now, we realize that the linearized observation equation
(Equation (25)) only relates the state deviation at time tk to
the observation deviation at the same time. If we were to
estimate all state deviations at different times, the number of
observations is generally much smaller than the number of
estimated parameters, yielding an underdetermined system. In
order to avoid this rank-deficiency, the state deviation at t = tk
is mapped back to epoch (t = t0) so the observation made at
time t = tk can be related to the state deviation at t = t0. Such
reformulation can be achieved by introducing the state transition
matrix (STM), which is expressed as

Φ(t2, t1) = ∂ X(t2)

∂ X(t1)
. (29)

That is, the STM is the partial of the state at time t2 with
respect to the state at time t1. Or rather, it can be rephrased as
the sensitivity of the state at t = t1 to the state at t = t2. Then,
this STM can be used to map the state deviation from time t1 to
time t2 as follows:

x(t2) = Φ(t2, t1)x(t1). (30)

This property of the STM is of great importance, as it allows
one to relate the observation deviation at time t = tk to the state
deviation at epoch as follows:

yk = H̃k xk + εk = H̃kΦ(tk, t0)x0 + εk = Hk x0 + εk, (31)

where Hk = H̃kΦ(tk, t0). The significance of Equation (31) is
subtle but important. Equation (31) states that the state deviation
at t = tk can be mapped back to epoch t0 with the use of the
STM. That is, the state deviation at epoch t0 has sensitivity to the
observation made at t = tk. Thus, the information in observations
at future times can be mapped back and accumulated with
respect to epoch t0, allowing one to solve for the epoch time
state deviation.

For a system of non-linear dynamical equations, the STM
cannot be computed analytically and has to be numerically
propagated together with the reference state. The time derivative
of the STM is given as

Φ̇(t, t0) = A(t)Φ(t, t0), (32)

where Φ(t0, t0) is the identity matrix by definition. The compu-
tation of the dynamics matrix A is described in Appendix A.1.

5.2. Cost Function

The goal of a least-squares filter is to minimize the cost
function J defined as

J = 1

2
( y − H x0)T W ( y − H x0) +

1

2
(x̄0 − x0)T P̄ −1

0 (x̄0 − x0),

(33)

where W is the observation weighting matrix, P is the covariance
matrix, and barred quantities are a priori values. Specifically, P̄0
is the a priori covariance matrix of the estimated parameters at

t = t0. Then, this cost function is differentiated with respect to
x0 and set to zero, which yields the normal equation

x̂0 =
(∑

HTWH + P̄ −1
0

)−1 (∑
HTWy + P̄ −1

0 x̄0

)
,

(34)

where x̂0 denotes the correction to the full state, bold quan-
tities belong to the summation notation, quantities in the first
parenthesis are called the information matrix Λ, and quantities
in the second parenthesis are called the normal matrix (N). The
covariance matrix (P) that defines the uncertainty of the esti-
mated parameters can be obtained by taking the inverse of the
information matrix, as shown in Equation (34).

6. RESULTS

In this section, the solution from the least-squares filter is
discussed. The entire data arc from 1992 through 2008 was fit
simultaneously instead of fitting two consecutive apparitions
and adding more data for the next observation arc. Although
the angular velocity data is available, only the Euler angles
were processed. The angular velocity data was used to validate
that the filter solution accurately models the stated spin state
of Toutatis. One difficulty encountered during the estimation
process is that when the actual observation uncertainties were
used to weight the data, the filter did not converge. Thus, the
observation uncertainties were artificially inflated to ensure
convergence. The observation uncertainties were uniformly
increased to 15 deg for the 1992 through 2000 apparitions and
20 deg for the 2004 through 2008 apparitions.

The initial conditions (i.e., reference state), 1σ a priori uncer-
tainties, converged solution, and estimated 1σ uncertainties of
Toutatis’ spin state at 17:49:47 UTC on 1992 November 9 are
presented in Table 2.

The initial Euler angles and angular velocity were obtained
by backward propagation of one of the observations during the
1992 flyby. This particular epoch was chosen because it is one
month prior to Toutatis’ closest approach to the Earth during the
1992 apparition, and it coincides with the onset of the terrestrial
torque for this data arc. As mentioned above, the moments of
inertia are all normalized by Izz. For a qualitative analysis, it
is only necessary to know the ratios of the moments of inertia
to infer the internal structure of the body. These moment of
inertia ratios were estimated by coauthor Busch starting from
the solution of Ostro et al. (1999). Note that the uncertainty of
Izz is tightened so the filter practically leaves this parameter out
of the state vector (i.e., Izz is not a free parameter as the moment
of inertia ratios are estimated).

The converged solution shows that the off-diagonal terms in
the inertia tensor and the COM-COF offset are indistinguishable
from zero. Also, the Euler angles, diagonal terms of the inertia
tensor, and COM-COF offset have far lower uncertainties
compared to the a priori uncertainties. The uncertainties of the
angular velocity would decrease further had they been included
in the observations; instead, the angular velocity data are used to
validate the estimated solution. Figure 7 shows the Euler angle
post-fit residuals normalized by the observation uncertainties.

In Figure 7, all post-fit residuals lie within the 3σ bounds.
One observation during the 1992 apparition was recorded
when Toutatis was observed nearly end-on, and it corresponds
to the largest post-fit residual near the −3σ bounds (i.e.,
a diamond marker). Figure 8 shows the normalized angular
velocity residuals for the converged solution.
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Table 2
Initial Condition and Converged Solution of the State Vector and Their Uncertainties at 17:49:47 UTC on 1992 November 9

Parameter Initial Value A Priori Estimated Value Estimated
1σ Uncertainty 1σ Uncertainty

α (deg) 144.863 15 145.498 3.762
β (deg) 65.467 15 65.865 2.388
γ (deg) 241.785 15 241.524 2.586

ω1 (deg day−1) 14.514 0.1 14.510 0.0994
ω2 (deg day−1) 33.532 0.1 33.529 0.0971
ω3 (deg day−1) −98.713 0.1 −98.709 0.0957

Īxx (n.d.) 3.091 1 × 10−1 3.0836 0.02822
Īyy (n.d.) 3.2178 1 × 10−1 3.235 0.0714
Īzz (n.d.) 1 1 × 10−9 1 1 × 10−9

Īxy (n.d.) 0 1 × 10−2 −7.1082 × 10−4 0.00994
Īyz (n.d.) 0 1 × 10−2 1.1707 × 10−3 0.00939
Īxz (n.d.) 0 1 × 10−2 1.3252 × 10−3 0.00753

r̄x (km) 0 1 × 10−3 5.126 × 10−7 1.6789 × 10−5

r̄y (km) 0 1 × 10−3 −1.720 × 10−7 3.3489 × 10−5

r̄z (km) 0 1 × 10−3 −3.6732 × 10−7 4.2864 × 10−5
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Figure 7. Euler angle post-fit residuals normalized by observation uncertainties.
The circle markers are the first Euler angle, the diamond markers are the second,
and the square markers are the third.

As shown in Figure 8, none of the observations exceed the
3σ bounds, or even 1σ bounds, and the angular velocity is well
modeled by the converged solution.

7. DISCUSSIONS AND FUTURE
OBSERVATION OPPORTUNITIES

The moment of inertia ratios Ixx/Izz and Iyy/Izz are estimated
to a fractional precision of 0.9% and 2.2%, respectively. These
measurements are unprecedented for any near-Earth asteroid,
and will provide stringent constraints on Toutatis’ internal
density distribution. However, it is still inappropriate to make
any claims to the absence or presence of internal density
variations at this time, because the current Toutatis shape
model is not sufficiently accurate to distinguish mass anomalies
of <3% of the asteroid’s total mass from shape differences.
The radar and Chang’e 2 images from 2012 show that the
shape model of Hudson et al. (2003) only corresponds to
Toutatis’ actual shape over ∼97% of its volume. When a more
accurate shape model of Toutatis is available, the moment ratio
measurements will be sensitive to smaller mass anomalies.

Using the converged solution provided in Table 2, we ex-
trapolated our model of Toutatis’ spin state forward in time
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Figure 8. Angular velocity post-fit residuals normalized by observation uncer-
tainties. The circle markers are the first components, the diamond markers are
the second components, and the square markers are the third components of the
angular velocity.

from 2008 to Toutatis’ next Earth flybys in 2012 December and
2016 December/2017 January. The uncertainties in Toutatis’
predicted orientation grow with time; during the 2012 flyby,
they were ∼25 deg (3σ ). With that caveat, we predicted what
we would see during future radar imaging campaigns.

During the 2012 flyby, over December 3–22, Goldstone ob-
tained delay-Doppler resolution as fine as 0.025 μs delay/
3.75 m range resolution (closest approach was 0.04633 AU
on 2012 December 12). As viewed from Earth, Toutatis was
seen from both broadsides (sub-Earth point near the + z and
−z directions) and both ends (sub-Earth near the + x and −x
directions), showing nearly the entire surface. The asteroid’s
orientations matched our predictions to within their uncertain-
ties. Following the radar campaign, we have begun to refine our
spin state model to match Toutatis’ orientation in 2012 to within
a few degrees and to match the spin vector measurements from
radar speckle tracking (Busch et al. 2009). We will then be able
to make a better comparison between our model and images
from the Chang’e 2 flyby. The final results of the 2012 radar
campaign will be the subject of a future paper.

At the end of 2016 and the beginning of 2017, Toutatis will
be much farther from the Earth than in 2012 (0.2512 AU on

7
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2016 December 29). Radar observations would be limited to
Arecibo only, with a delay resolution of ∼1 μs or 300 m in range,
which would still be sufficient to improve the spin state model,
measuring the spin state change from the 2012 flyby. There will
be no significant tidal torques from the Earth due to the 2016
flyby, because of the greater distance. After 2016, Toutatis will
not approach within 0.5 AU of Earth until 2065, when it begins
the next set of once-per-four-years flybys, and there will be no
additional radar opportunities until then. There will be frequent
opportunities for optical light-curve observations, which would
further improve our knowledge of Toutatis’ spin state.

8. CONCLUSIONS

In this paper, a method to estimate the rotational dynamics of
a tumbling body was described. Specifically, this method was
applied to estimate the rotational dynamics of 4179 Toutatis,
which is a near-Earth asteroid that has been making an Earth
flyby approximately every four years. The spin state estimation
was realized by directly relating the COM-COF offset and the
moment of inertia ratios to the spherical harmonic coefficients
of the first- and second-degree gravity potential, which is the
driving force of the external torque due to an external spherical
body. The dynamical model included the solar and terrestrial
torques as perturbations. The Euler angle data between 1992
and 2008 obtained at Goldstone and Arecibo were processed to
show that the asteroid has a negligible COM-COF offset, and
that the estimated moment of inertia ratios predicted Toutatis’
2012 December orientation within the formal uncertainties of
20–30 deg. In the future, the 2012 observations will be used to
refine the spin state model and compare it to an improved Tou-
tatis shape model to constrain the asteroid’s internal structure.
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supported by NASA grants NNX09AU23G and NNX10AG53G
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vation Programs, respectively. M.W. Busch was partially sup-
ported by the National Radio Astronomy Observatory’s Jansky
Postdoctoral Fellowship program.
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APPENDIX

APPENDIX MATERIAL

A.1. Dynamics Matrix

In order to compute the STM, it is necessary to compute
the dynamics matrix A (Equation (32)). There are only five
components that are nonzero in the dynamics matrix, which
are ∂α̇/∂α, ∂α̇/∂ω, ∂ω̇/∂ω, ∂ω̇/∂Iij , and ∂ω̇/∂ rCM. These five
quantities are solved below.

A.1.1. ∂α̇/∂α

From Equation (4), ∂α̇/∂α is computed as

∂α̇

∂α
= ∂[C(α)]

∂α
ωB = 0; (A1)

∂α̇

∂β
= ∂[C(α)]

∂β
ωB

= 1

sin2 β

[− sin γ cos β − cos γ cos β 0
0 0 0

sin γ cos γ 0

]
ωB;

(A2)

∂α̇

∂γ
= ∂[C(α)]

∂γ
ωB =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos γ

sin β
− sin γ

sin β
0

− sin γ − cos γ 0

−cos γ

tan β

sin γ

tan β
0

⎤
⎥⎥⎥⎥⎥⎥⎦

ωB. (A3)

A.1.2. ∂α̇/∂ω

Also from Equation (4), ∂α̇/∂ω is computed as

∂α̇

∂ω
= [C(α)]. (A4)

A.1.3. ∂ω̇/∂ω

First, note the following identity:

∂(ω̃a)

∂ω
= ∂(ω × a)

∂ω
= −∂(a × ω)

∂ω
= −∂(ãω)

∂ω
= −ã.

(A5)

Then, from Equation (8), ∂ω̇/∂ω becomes

∂ω̇B,CM

∂ωB,CM
= I−1

B,CM

(
[ ˜Iω]B,CM − ω̃B,CMIB,CM +

∂ LB,CM

∂ωB,CM

)
,

(A6)

where ∂ LB,CM/∂ωB,CM is nominally a zero matrix.

A.1.4. ∂ω̇/∂Iij

From Equation (8), the partial of ω̇ with respect to Iij is
computed as

∂ω̇

∂Iij

= ∂(I−1)

∂Iij

(−ω̃Iω + L) + I−1

(
−ω̃

∂I

∂Iij

ω +
∂ L
∂Iij

)
.

(A7)

In order to compute ∂(I−1)/∂Iij , the familiar identity
I−1I = 1[3×3] becomes useful. That is,

∂(I−1I )

∂Iij

= ∂(I−1)

∂Iij

I + I−1 ∂I

∂Iij

= 0, (A8)

which yields

∂(I−1)

∂Iij

= −I−1 ∂I

∂Iij

I−1. (A9)

Thus, Equation (A7) becomes

∂ω̇

∂Iij

= −I−1 ∂I

∂Iij

I−1 (−ω̃Iω + L) + I−1

×
(

−ω̃
∂I

∂Iij

ω +
∂ L
∂Iij

)
. (A10)

Note that L is expressed as a function of the spherical
harmonics. These spherical harmonics are linearly related to
the inertia tensor, so the chain rule can be used to compute
∂ L/∂Iij . The acceleration due to U2 (Equation (19)) can be
expressed as:

∂U2

∂ r
= aC20C20 + aC21C21 + aC22C22 + aS21S21 + aS22S22

=
∑

aC2ml
C2ml, (A11)
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Table 3
Observation Log

Date Mid-epoch Resolution Euler Angles Angular Velocity
(UTC) (μs × Hz) (deg) (deg day−1)

Goldstone

1992 Dec 2 21:40 0.500 × 0.1000 (122.2, 86.5, 107.0) (−35.6, 7.2, −97.0)
1992 Dec 3 19:30 0.500 × 0.1000 (86.3, 81.8, 24.5) (−16.4, −29.1, −91.9)
1992 Dec 4 18:10 0.500 × 0.1000 (47.8, 60.7, 284.0) (29.1, −23.2, −97.8)
1992 Dec 5 18:50 0.125 × 0.0833 (14.6, 39.4, 207.1) (33.3, 8.2, −92.2)
1992 Dec 6 17:30 0.125 × 0.0833 (331.3, 23.7, 151.6) (6.6, 34.5, −95.8)
1992 Dec 7 17:20 0.500 × 0.1000 (222.5, 25.4, 143.9) (12.8, 25.4,−104.1)
1992 Dec 8 16:40 0.125 × 0.0330 (169.8, 45.5, 106.9) (−31.1, −21.9, −97.7)
1992 Dec 9 17:50 0.125 × 0.0330 (137.3, 71.3, 22.3) (11.8,−36.9, −94.9)
1992 Dec 10 17:20 0.125 × 0.0330 (103.1, 85.2,292.6) (35.8, −8.9, −97.9)
1992 Dec 11 09:40 0.500 × 0.1000 (77.0, 85.7, 225.5) (31.0, 17.0, −96.3)
1992 Dec 12 09:20 0.500 × 0.1000 (42.8, 70.2, 133.2) (−1.3, 37.0, −95.9)
1992 Dec 13 08:10 0.500 × 0.1000 (13.7, 44.4, 51.9) (−38.3, 17.9, −97.3)
1992 Dec 14 07:50 0.500 × 0.1000 (323.7, 14.0, 0.0) (−70.5, −30.6, −91.1)
1992 Dec 15 07:50 0.500 × 0.1000 (193.2, 24.4, 21.4) (22.1,−26.6, −96.6)
1992 Dec 16 07:10 0.500 × 0.1000 (165.1, 46.4, 310.6) (33.4, −3.4, −93.7)
1992 Dec 17 06:49 0.500 × 0.1000 (130.6, 76.1, 234.9) (12.6, 33.9,−94.0)
1992 Dec 18 07:09 0.500 × 0.1000 (91.6, 81.6, 142.4) (−24.3, 29.6, −102.0)

Goldstone

1996 Nov 25 19:48 0.125 × 0.0331 (130.5, 78.9, 143.2) (−32.0, 16.4,−98.2)
1996 Nov 26 17:51 0.125 × 0.0331 (94.2, 88.1, 57.7) (−30.6, −18.7, −91.5)
1996 Nov 27 17:34 0.125 × 0.0331 (60.4, 81.2, 320.9) (10.7,−36.8, −94.7)
1996 Nov 29 15:37 0.125 × 0.0331 (349.3, 30.0, 168.0) (23.1, 28.9, −98.3)
1996 Nov 30 15:47 0.125 × 0.0331 (250.3, 14.2, 166.9) (−18.6, 32.1, −94.9)
1996 Dec 1 14:23 0.125 × 0.0331 (180.4, 37.6, 139.3) (−38.7, −0.5, −98.1)
1996 Dec 2 13:43 0.125 × 0.0331 (146.7, 64.0, 64.9) (−12.6, −34.8, −97.9)
1996 Dec 3 12:20 0.125 × 0.0331 (116.7, 81.4, 340.4) (24.3,−28.2, −98.1)

Goldstone

2000 Nov 4 17:06 0.125 × 0.0331 (110.0, 88.5, 30.0) (0.0,−32.5, −98.9)
2000 Nov 5 18:01 0.125 × 0.0331 (70.6, 84.0, 281.0) (34.5,−17.2, −97.9)

Arecibo

2004 Oct 7 13:56 0.100 × 0.0114 (79.9, 85.3, 365.2) (−2.5, −35.4, −109.0)
2004 Oct 8 14:04 0.100 × 0.0114 (44.9, 72.5, 263.1) (32.4,−18.1, −97.9)
2004 Oct 9 13:57 0.100 × 0.0114 (12.8, 47.3, 181.4) (29.7, 22.8, −98.1)
2004 Oct 10 13:17 0.100 × 0.0114 (327.7, 20.4, 124.1) (−10.7, 34.7, −97.3)

Arecibo

2008 Nov 22 10:54 0.100 × 0.0186 (119.5, 90.7, 92.0) (118.1, 90.4, 93.6)
2008 Nov 23 10:45 0.100 × 0.0186 (86.2, 85.0, 0.3) (−0.4, −36.2, −98.9)

Notes. Toutatis’ orientations and instantaneous spin vectors as estimated from Goldstone and Arecibo delay-Doppler images from
1992 to 2008. Times are given at the mid-epoch of each observation and image resolution is given in time delay and Doppler shift.

where each a is the partial of the total acceleration with respect
to the parameter in the subscript, and C2ml denotes all second-
degree spherical harmonics ordered in the following manner:

C2ml = [C20 C21 C22 S21 S22]. (A12)

Then, the torque due to the second-degree potential is ex-
pressed as

L2 = −Ms r × ∂U2

∂ r
= −Ms[r̃]

(∑
aC2ml

C2ml

)
.

(A13)

Thus, the partial of the torque due to the second-degree
spherical harmonics is given as

∂ L2

∂C2ml

= −Ms[r̃]aC2ml
. (A14)

Applying the chain rule, we get

∂ L
∂Ixx

= ∂ L
∂C20

∂C20

∂Ixx

+
∂ L

∂C22

∂C22

∂Ixx

= − GMs

M∗(R∗)2
[r̃]

(
1

2
aC20 − 1

4
aC22

)
; (A15)

∂ L
∂Iyy

= ∂ L
∂C20

∂C20

∂Iyy

+
∂ L

∂C22

∂C22

∂Iyy

= − GMs

M∗(R∗)2
[r̃]

(
1

2
aC20 +

1

4
aC22

)
; (A16)
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∂ L
∂Izz

= ∂ L
∂C20

∂C20

∂Izz

= GMs

M∗(R∗)2
[r̃]aC20; (A17)

∂ L
∂Ixy

= ∂ L
∂S22

∂S22

∂Ixy

= GMs

2M∗(R∗)2
[r̃]aS22; (A18)

∂ L
∂Iyz

= ∂ L
∂S21

∂S21

∂Iyz

= GMs

M∗(R∗)2
[r̃]aS21; (A19)

∂ L
∂Ixz

= ∂ L
∂C21

∂C21

∂Ixz

= GMs

M∗(R∗)2
[r̃]aC21 . (A20)

A.1.5. ∂ω̇/∂ rCM

From Equation (8), the partial of ω̇ with respect to rCM is
computed as

∂ω̇

∂ rCM
= I−1

( ∑
Earth,Sun

∂ L1

∂ rCM

)
, (A21)

where the following equation is substituted:

∂ L1

∂ rCM
= −GM∗Ms

r3
[r̃]. (A22)

A.2. Observation Log

Table 3 lists the observations of Toutatis used in our least-
squares filter and radar images recorded at Goldstone between
1992 and 2000 and at Arecibo between 2004 and 2008. Addi-
tional radar images were obtained at Arecibo in 1992 (Ostro
et al. 1995; Hudson & Ostro 1995), but these overlapped the
time span of the Goldstone observations and do not provide
more information on the spin state.
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