
Astronomy and Computing 28 (2019) 100285

Contents lists available at ScienceDirect

Astronomy and Computing

journal homepage: www.elsevier.com/locate/ascom

Full length article

GPU-accelerated algorithm for asteroid shapemodeling✩

M. Engels a,∗, S. Hudson a, C. Magri b
a School of Engineering and Applied Sciences, Washington State University, 2710 Crimson Way, Richland, WA 99354, United States
b Division of Natural Sciences, University of Maine at Farmington, 173 High Street, Farmington, ME, 04938, United States

a r t i c l e i n f o

Article history:
Received 20 October 2018
Accepted 11 May 2019
Available online 20 May 2019

Keywords:
GPGPU
CUDA
Radar astronomy
Asteroid modeling
Parallel algorithm optimization

a b s t r a c t

Modeling asteroid shapes from optical and radio telescope data is computationally expensive and
current sequential-fit inversion algorithms are very slow, up until recently often taking days or weeks
for larger models. The modeling process is comprised of many serialized independent calculations
that can be parallelized with inexpensive and ubiquitous graphical processing unit (GPU) hardware.
We have accelerated the SHAPE modeling algorithm (Hudson, 1994) with an Nvidia GPU and algorithm
optimization while maintaining full backward compatibility, achieving speed boosts of 2.2x-19.3x over
the established algorithm. The highest speed boosts achieved were for portions of the modeling process
taking up a majority of processing time on the existing algorithm, moving the average speedup factor
towards the upper end of the range.

We use scale model asteroids to show that our method can model shapes that are both unique
to the observed data and stable. High resolution complex vertex models benefit the most from the
new algorithm because of its better scalability to problem size on GPU hardware. Specific algorithm
changes include facet-parallel rendering, pixel-parallel delay-Doppler mapping, parallel reductions, and
streamed frame operations.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Single-CPU sequential parameter fit methods for modeling
asteroid shapes and associated parameters from observed data
can be very time consuming while the inversion problem of
asteroid shape reconstruction itself is quite suitable for some
parallel processing (Ďurech et al., 2015b).

The SHAPE algorithm, originally written for MPi clusters and
single-CPU machines, is noted for its ability to use ground-based
optical and radio telescope data. SHAPE remains the only package
used in all published and in-progress radar-based shape/spin
reconstructions (Hudson and Ostro, 1995; Nolan et al., 2013;
Ostro et al., 2000; Scheeres et al., 2006). Asteroid shape modeling
utilizing multiple data sources offers determination of the shape
and other physical properties in one inversion process and has
produced ‘spectacular results’ in the ADAM algorithm (Durech
et al., 2015a).

SHAPE projects a model asteroid into the space occupied by
observed data, compares both and calculates the χ2 error from
the resulting sum of squares of residuals. The algorithm itera-
tively adjusts a specified series of model parameters in a sequen-
tial fit scheme that minimizes the χ2 error via a bracket and Brent

✩ This research did not receive any specific grant from funding agencies in
the public, commercial, or not-for-profit sectors.

∗ Corresponding author.
E-mail address: matthias.engels@wsu.edu (M. Engels).

method (Press et al., 1992). This approach requires many repeated
model renderings and Doppler/delay-Doppler mappings for each
parameter adjustment, looped until a specified χ2 error threshold
is reached.

Even with modern CPUs, SHAPE is very slow: the final mod-
eling step for a 40,000-facet model of 4179 Toutatis takes 25 h
for a single iteration through 20,232 parameters with 401 × 401
pixel resolution. Certain computationally expensive SHAPE sub-
algorithms are good candidates for Single Instruction Multiple
Thread (SIMT) implementation on GPU hardware. SHAPE relies
heavily on rasterization and radar mapping calculations that both
perform many independent calculations.

Prior attempts to accelerate SHAPE with GPU processing cor-
rectly identified some of these sub-algorithms but suffered from
a memory transfer bottleneck, resulting in worse performance of
the GPU algorithm (Levengood et al., 2013).

CUDA-SHAPE offers:

• GPU accelerated implementation running 2.2x-19.3x faster
than the older SHAPE algorithm.

• High-resolution modeling enabled by acceleration and scal-
ability. SHAPE is typically operated at low resolutions to
reduce computational load.

• Full backward compatibility with SHAPE data sets and mod-
els. Existing data sets can be used without modification.

https://doi.org/10.1016/j.ascom.2019.05.003
2213-1337/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.ascom.2019.05.003
http://www.elsevier.com/locate/ascom
http://www.elsevier.com/locate/ascom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ascom.2019.05.003&domain=pdf
mailto:matthias.engels@wsu.edu
https://doi.org/10.1016/j.ascom.2019.05.003

2 M. Engels, S. Hudson and C. Magri / Astronomy and Computing 28 (2019) 100285

CUDA-SHAPE also supports the simultaneous execution of mul-
tiple modeling instances (depending on available GPU resources)
and CPU multi-threading, providing a modest performance im-
provement even without any GPU acceleration.

Structure

We first offer a short introduction to asteroid observation
data types in general and delay-Doppler radar in particular. In
Section 2 we first show the methods and theory behind CUDA-
SHAPE, including an analysis of several sub-algorithms. We then
describe a method to verify the accuracy of our algorithm. Sec-
tion 3 shows the results of the accuracy test as well as metrics and
benchmarks to gauge algorithm performance. Finally, we present
a discussion of the findings and offer interpretations in Section 4.

Concepts of ground-based observational data

Both SHAPE and CUDA-SHAPE utilize ground-based radar and
optical observations. The latter are referred to as lightcurves
and describe an object’s brightness in the night sky over sev-
eral observation periods, resulting in a plot of brightness over
time. Lightcurves can be collected with nearly any optical tele-
scope. Radar observations can be split into Doppler and delay-
Doppler and require at least one radio telescope transmitting a
microwave signal to the target and one radio telescope to record
the signal reflected off the target. Transmitting and receiving may
be performed by the same or two separate telescopes.1 Delay-
Doppler radar involves sending coded pulses of fixed-frequency
microwaves towards a target object, which will reflect these
pulses back to a receiving telescope. The target’s leading edge
reflects incoming pulses before the back does, introducing a delay
of the received signal varying with target-antenna. The pulses
are coded in a known pattern by the transmitting antenna which
allows precise timing information to be gathered from the de-
layed reflected pulses. If the fixed frequency microwave pulses
are reflected off a moving surface, they will experience a Doppler
shift in frequency. As an asteroid rotates about an axis, some of
its surfaces will be rotating towards an observer on Earth while
others would be rotating away. These relative motions cause a
Doppler frequency shift of the reflected pulses that is propor-
tional to the speed at which each surface portion moves towards
or away from the observer. The frequency shift is measured by
the receiving telescope and reveals information about the spin
state of the target.2 For weak targets it may be necessary to record
only Doppler shifts and forego delay resolution as delay-Doppler
images are inherently noisier than Doppler spectra.

SHAPE and CUDA-SHAPE treat delay-Doppler radar images as
two-dimensional data constructs comprised of discrete Doppler
resolution (Hz) bins and discrete delay resolution (us) bins. Delay-
Doppler images offer a top-down view of the target’s front (fac-
ing the observer). SHAPE (and therefore, CUDA-SHAPE) perform
delay-Doppler mapping. For each trial parameter value, SHAPE
renders a two-dimensional plane-of-sky (POS) image, computes a
synthetic delay-Doppler image or Doppler spectrum (or lightcurve
intensity), computes the χ2error, and re-adjusts the parameter
to minimize χ2. This paper will focus only on delay-Doppler
data because it is the most complex data type and involves
nearly all the GPU-accelerated algorithms written for CUDA-
SHAPE. The Doppler data processing routines are simplified ver-
sions of their delay-Doppler counterparts and lightcurve data
processing requires only one of the routines described here.

1 For example, the Arecibo observatory might serve as transmitter while
Goldstone performs receiving duties.
2 Naturally, an asteroid would be moving at some significant speed with

relation to the Earth telescope, but this motion and its corresponding Doppler
shift are predictable and known from orbit information and thusly compensated
for by the receiving telescope.

Fig. 1. Memory bandwidth PCIe bus vs GPU.

2. Methods and implementation

General approach

A primary goal in the design of CUDA-SHAPE was to maintain
backward compatibility with the data structures in SHAPE. Mod-
els are organized into data sets which are sub-divided into frames,
which are individual observations. A single data set might consist
of several consecutive nights of radar data obtained at the same
telescope with the same observing setup. The individual delay-
Doppler radar images are represented by different frames. Each
frame has data arrays describing the plane-of-sky (POS) image,
scattering angles, depth values, radar information.

We have moved all memory allocations to device memory
(GPU) to avoid costly memory transfers between host and device,
which have separate and exclusive memory spaces. The GPU must
copy any host data it accesses over the PCIe bus, capable of
far lower memory bandwidth than a modern GPU (see Fig. 1).
Frequent small memory transfers saturate the PCIe bus and bot-
tleneck GPU performance. CUDA-SHAPE maintains all program
data in device memory to minimize transfers.

Careful consideration should be given to choosing a particular
device memory for a given task. We used a Nvidia GTX1080 Ti
GPU with 28 separate streaming multiprocessors (SM) and 11.5
GB global memory for the results presented in this paper. Each of
its SMs can execute two thread blocks simultaneously with 48 kB
of shared memory and 64 kB of local register memory per block.
Data shared by all threads in a kernel.3 (transformation matrices,
constants, global variables) are loaded into shared memory and
data specific to an individual thread are loaded into local thread
registers. Both types are located on the SM die and can therefore
be accessed with very low latency. ‘Shared’ memory is shared
only within the same thread block. If a shared variable must be
accessed by all blocks, it must be initialized by one thread in each
block.

GPU computing depends on exploitation of thread-level par-
allelism wherever possible.4 The original SHAPE algorithm owes
much of its slow performance to serial computations in many
for-loops. SHAPE’s rasterization routine is a good example for
this: it iterates through each of the triangular facets making up
the model asteroid, calculates depth and scattering values and
determines which pixels the facet projects upon. Each pixel’s
calculations are independent and can be performed by CUDA
threads in parallel for the entire model.

3 Functions executed on the GPU are called kernels
4 A CUDA thread is the smallest independent program element able to do its

own work.

M. Engels, S. Hudson and C. Magri / Astronomy and Computing 28 (2019) 100285 3

Fig. 2. SHAPE rasterization (left) vs CUDA-SHAPE rasterization (right).

Rasterization routine

The rasterization routine occupies 50%–90% of total simulation
time, depending on source data type. This standard rasterization
algorithm (Pineda, 1988) iterates through the triangular facets
of the model asteroid (nfacets total), determines which plane-of-
sky (POS) image pixels the facet will project on, and calculates
scattering angles. This process is shown in Fig. 2 (left side).

CUDA-SHAPE replaces the facet for-loop with a kernel launch-
ing nfacets threads. The block size of 512 threads provides a bal-
ance between number of facets processed per block and stream-
ing multiprocessor (SM) resources available per block. We use
atomic operations5 to prevent race conditions that may arise
when multiple threads access the same pixel. For example, a facet
thread might calculate a depth value for a pixel while a thread for
another facet also calculates a depth value for the same pixel.

An atomic compare operation on the frame’s existing pixel
depth value ensures that only one thread at a time may compare
and replace that frame pixel depth value. Atomic operations se-
rialize read/write accesses to a specified memory location which
can slow down a parallel algorithm and their use should be mini-
mized. Both SHAPE and CUDA-SHAPE maintain a global bounding
box in the POS image which contains the entirety of the model
and eliminates as much ‘black space’ as possible, minimizing
the pixels that must be iterated over. SHAPE updates its global

5 An atomic operation is an uninterruptible read–modify–write memory
operation requested by individual threads, updating one value at a specific
address. It is meant to serialize potentially simultaneous access from multiple
threads.

POS bounding box in every pixel iteration for every facet de-
spite not using it until much later. SHAPE also maintains both a
floating-point and an integer bounding box. CUDA-SHAPE alters
this process slightly because the required atomic operations to
update global bounding box are very costly in computational
efficiency.

We removed the global bounding box update from each facet
thread and used a shared array of doubles to keep track of only
a floating-point bounding box local to each thread block. After
rasterization finishes, the local bounding boxes are reduced into
a global bounding box. The entire process:

1. Synchronize all threads after pixel loop,
2. The first thread in each block (threadIdx.x=0) determines

the global bounding box floating-point limits via atomic
compare operations between all blocks for this frame,

3. A separate kernel casts the floating-point limits to integers
and updates the global bounding box integer limits with a
single thread per frame.

This method minimizes the quantity of atomic operations and
maximizes their speed by performing them in on-die shared
memory. The rasterization process used by CUDA-SHAPE is shown
on the right side in Fig. 2.

The rasterization algorithm used by both SHAPE and CUDA-
SHAPE employs barycentric coordinates6 to interpolate depth
values z and reflection angles for individual POS pixels within a

6 Barycentric coordinates specify the location of a point in a triangle as the
center of mass, or barycenter, of unequal masses at the vertices of the triangle.

4 M. Engels, S. Hudson and C. Magri / Astronomy and Computing 28 (2019) 100285

Fig. 3. Parameters s(x,y) and t(x,y) in barycentric coordinates.

given triangle. We have altered how barycentric parameters s(x,y)
and t(x,y) – shown in Fig. 3 as lengths AP and BP - are calcu-
lated and reduced the arithmetic load of the kernel. The original
SHAPE algorithm used (1)–(3) to compute both parameters and
the pixel-dependent spatial coordinate x for each pixel the facet
iterated through. V0, V1, and V2 are the 3D coordinates of the three
vertices making up a single triangular facet.7

x.x = i · kmpxl and x.y = j · kmpxl (1)

s =
(x.x − v0.x)(v2.y − v1.y) − (v2.x − v1.x)(x.y − v0.y)

(v1.x − v0.x)(v2.y − v1.y) − (v2.x − v1.x)(v1.y − v0.y)
(2)

t =
(v1.x − v0.x)(x.y − v0.y) − (x.x − v0.x)(v1.y − v0.y)

(v1.x − v0.x)(v2.y − v1.y) − (v2.x − v1.x)(v1.y − v0.y)
(3)

Most quantities in (2) and (3) remain the same for each pixel
in a facet calculation. Only the spatial coordinate x changes by
a fixed amount in every pixel iteration, which means that s
and t change by fixed amounts. CUDA-SHAPE calculates these
discrete steps before the pixel loop starts. At the end of each pixel
column (i) or row (j), the steps (si, ti, sj, tj) are added to the pre-
calculated starting points for s(x,y) and t(x,y), thereby reducing a
full computation of (2) and (3) (8 multiplications, 4 subtractions,
and 2 divisions) to just 2–4 simple additions for every pixel.

Doppler/delay-Doppler mapping

The delay-Doppler mapping routine synthesizes a delay-Doppler
image from the model POS image generated by the rasterization
routine by mapping radar responses from POS space to delay-
Doppler space. The routine cycles through every image pixel
within the frame’s global bounding box and determines upper
and lower limits of the delay and Doppler bins applicable to
that pixel. The routine iterates through each bin, calculating and
storing the pixel’s power contribution to that bin.

CUDA-SHAPE replaces a double-for loop through these pixels
with a kernel that performs mapping for all pixels in parallel.
Each pixel thread iterates through its radar bins and writes the
power contributions to global memory with an atomic operation
to avoid a race condition between pixels competing for the same
bin(s). Radar data is organized into ndop rows (Doppler) and
ndel columns (delay-Doppler). The radar mapping routines keep
track of a frame’s lowest and highest row and column numbers,
forming a global Doppler/delay-Doppler limit box for the frame.
SHAPE does this for every pixel in both floating-point and inte-
ger formats. CUDA-SHAPE performs atomic operations on shared
memory arrays instead and updates global limits at the end of
the kernel in an approach nearly identical to that described for
updating global POS bounding box limits.

7 Kmpxl (kilometer per pixel) is a scaling factor determined by the observing
radar setup.

Reductions

SHAPE must calculate array reductions for many purposes:
maximum depth in a POS frame, summed radar signals, total
frame brightness, mass and volume calculations, and others.
CUDA-SHAPE’s parallel reduction algorithm uses a highly-parallel
multi-step process. After all array elements have been loaded
to global device memory, the reduction kernel calls a CUDA-
intrinsic shuffle-down instruction. This achieves a reduction of
all values within a warp (32 threads) without the use of any
shared memory, with fewer instructions than a shared memory
operation would have required, and without an explicit call to
synchronize all threads in a block. The second step reduces the
warp results in each block using shared memory. Similarly, step 3
reduces the block results from the entire grid. The whole process
is illustrated and contrasted against SHAPE’s reduction method in
Fig. 4, where step 1 is the shuffle reduce inside each warp, step
2 is the block-level reduce, and step 3 reduces the block results
of the entire grid.

Batch processing and streaming

Thread-level parallelism alone is not enough for optimum
efficiency in our GPU algorithm. Many higher-level SHAPE func-
tions can be performed independently or asynchronously. SHAPE
processes frames serially while CUDA-SHAPE uses a batching and
streaming approach.

The calculation of frame-specific parameters can be batched
together into a single kernel for simultaneous processing. Func-
tion calls that calculate arrays of variables for each frame (i.e., the
rasterization routine) can be grouped into streams. A stream is an
independent sequence of GPU instructions and multiple streams
can be executed concurrently.

Our algorithm assigns low-level parallel, per-frame calcula-
tions to their own streams to perform concurrent calculations
on multiple frames. Testing has shown that 4–16 frames can
be processed concurrently by streams, depending on the com-
plexity and resource use of the kernel. A typical CUDA-SHAPE
subroutine calls a kernel to calculate all frame-specific quantities,
then streams low-level parallelism kernels with one frame per
stream and finishes with some post-processing of all frames in
another single kernel. This process is shown for the rasterization
routines in SHAPE and CUDA-SHAPE in Fig. 5 below. The resulting
streaming kernels can be seen to overlap in the profiling graph in
Fig. 6. All frames in a set can be finished in fractionally more time
than a single frame calculation, improving performance.

Algorithm verification

Before we can have confidence in CUDA-SHAPE’s results, its
uniqueness, stability, and sensitivity must be tested. Ideally, CUDA
-SHAPE should accurately model an object’s shape from some
observed data. The fitted shape should be unique given the data
set. We note that the χ2error function is not linear and may
well have more than one minimum. The best overall test of the
algorithm’s behavior is to supply it data on a known shape and
compare the modeled shape directly. We have verified the stabil-
ity and uniqueness using data from a verification experiment of
the original SHAPE algorithm (Hudson and Ostro, 1999; Hudson,
1994). Hudson scanned scale model asteroids made of clay using
monochromatic laser light and a modified Michelson interferom-
eter. The ratio of the wavelength of the interrogating signal and
the size of the object being interrogated are nearly identical for
a scale model asteroid (∼1 cm) scanned with a 632 nm laser
and a real asteroid (∼2 km) scanned with a 12.6 cm (2380 MHz)
radar. Hudson recorded data for these model asteroids in low,

M. Engels, S. Hudson and C. Magri / Astronomy and Computing 28 (2019) 100285 5

Fig. 4. Reduction in SHAPE (left) vs reduction in CUDA-SHAPE (right).

Fig. 5. Single-frame processing vs frame streaming.

Fig. 6. Overlapping streamed rasterization kernels.

Table 1
Modeling approach for scale asteroids. The npa rotation function penalizes any non-principal axis rotation — these are
tumbling rotations along 2 or even 3 axes.
Model description Penalty functions Determines:

1. Ellipsoid Inertia tensor, center of mass, npa
rotation

Size, orbit corrections, spin

2. Multiple harmonic models
(orders 3–15)

Inertia tensor, center of mass, npa
rotation, surface smoothness

Overall shape, large surface
features, spin

3. Multiple vertex models
(1000–25000 vertices)

Concavities, surface smoothness Medium and small-scale
surface features, craters, ridges

medium, and high ‘‘faux’’ delay-Doppler resolutions. We have
used this data to generate modeled shapes which we compare
to the actual objects used in Hudson’s experiment. A comparison
of the modeled shape to the shape of the actual object yields
powerful visual evidence of the algorithm’s usefulness.

We note that each model asteroid’s rotation was known and
fixed around a single axis. However, SHAPE’s ability to correctly
model rotation was thoroughly verified by the ability to take the
shape/spin model of complex rotator 4179 Toutatis and success-
fully predicting what would be seen when it was re-observed in
later years.

3. Results

Verification results and algorithm limitations

Modeling the scale asteroid shapes follows the same three-
step approach shown in Table 1. We start with an ellipsoid and
constrain it with several penalty functions guiding model evolu-
tion to determine approximate size, spin, and radar parameters.
Penalty functions impose additions to the model’s χ2error that
depend on a specific model feature. For example, the comdev
function applies a penalty based on how far away the object’s
center of mass is from the center of figure, thus discouraging

6 M. Engels, S. Hudson and C. Magri / Astronomy and Computing 28 (2019) 100285

models with nonuniform density. These functions are used to
control model evolution and to prevent unwanted behavior. Ap-
plication of penalty functions and their weights was guided only
by SHAPEs documentation and extensive experience with the
original algorithm — in other words, penalty application and
weighting were ‘blind’.

The finished ellipsoid model is converted to one described by
a spherical harmonic expansion. Increasing the harmonic degree,
we build each new model on the previous one to firm up esti-
mates on the shape of the object and large-scale surface features.
The last step switches to vertex models with increasing vertex
resolution. Vertex models are described entirely by the spatial
coordinates of each connected vertex, which form the entire
enclosed surface of the model. Increasing vertex counts lead to
better resolution of medium and small-scale surface features. We
apply penalties against excessive facet-scale surface roughness
and concavities to preclude formation of artifacts. The general
approach for the scale models was applying low penalties in sur-
face smoothness, center-of-mass distribution, and deviation from
average radius. This allowed for the formation of surface features
unimpeded by overly restrictive penalties while still suppressing
artifacts. After model complexity reached 5000–10000 vertices,
we applied heavier penalties in surface smoothness to suppress
the algorithm’s tendency to flatten out some surfaces and inter-
pret bright radar fronts as sharp ridges, which can sometimes
lead to modeled shapes that are more angular with heavy ridge
lines than the physical counterparts. This is especially applicable
to shapes that remain ambiguous in orientations from multiple
imaging angles, at least partially owing to north–south ambigui-
ties in round shapes (targets observed from the equatorial plane
will have indistinguishable north/south pairs of points whose
delay and Doppler values are always identical).

The results below show delay-Doppler and plane of sky (POS)
images for two scale asteroids and their modeled counterparts
created with CUDA-SHAPE. Scale asteroid 1 used 18 delay-Doppler
images (160 × 160) in 18 separate sets while scale asteroid 2 used
72 delay-Doppler images (113 × 138) in 2 sets. Figs. 7 through 9
show the plane of sky and delay-Doppler views of both the
real object and the modeled shape of the first scale asteroid,
depicting three different spin angle orientations. Similarly, the
second scale asteroid is shown in three spin angle orientations
in Figs. 10 through 12; depicting plane of sky and delay-Doppler
views of the real object and the modeled shape. Note that the
POS images of the real object are CCD sensor images and the
delay-Doppler images of the object are computer-generated from
the CCD POS images. Both fitted models appear to be reasonable
shape estimates for the actual objects. Scale asteroid 2 is a good
example of an ambiguous shape exhibiting the surface flatten-
ing/ridging property described earlier. The modeled shape shows
some surface flattening and ridging along the radar fronts (see
Fig. 11). This is somewhat suppressed by applying heavy penalties
in surface non-smoothness in higher vertex count models. Scale
asteroid 1 is a unique shape with little ambiguity, resulting in a
better shape fit with less penalty function application. We also
note that CUDA-SHAPE appears to be no more sensitive to the
applied scattering model than SHAPE.

Noise

The scale model asteroid data (specifically, the delay-Doppler
‘object’ images) used for CUDA-SHAPE’s algorithm verification did
not contain the noise typically present in real data. The modeling
run for scale asteroid 1 was repeated with artificially added noise
to the source radar images to verify CUDA-SHAPE’s robustness
towards image noise. The resulting model of scale asteroid 1 is
shown in Fig. 13 below with a frame epoch identical to that of
Fig. 7. CUDA-SHAPE capably deals with image noise as well as
SHAPE does and future work with our GPU-accelerated algorithm
will include noisy real data.

Fig. 7. Scale asteroid 1.

Fig. 8. Scale asteroid 1.

Model accuracy

We note that CUDA-SHAPE models often differ slightly in
χ2error from the same SHAPE model, typically 0.02%-0.80%. While
integer operations in a computer algorithm are guaranteed to be
associative, the same does not hold true for floating point oper-
ations due to the limited precision of representing real numbers
with binary numbers. A different order of operations will lead
to a different result. Unfortunately, order of operations is often
neither controllable nor repeatable in parallel algorithms. The
effect is very small for doubles (64 bit) and somewhat larger for
floats (32 bit). Consequently, CUDA-SHAPE retains full use of 64
bit precision throughout.

Performance metrics

We have measured the time required to go through one fit-
ting iteration in an elliptical and several harmonic and vertex

M. Engels, S. Hudson and C. Magri / Astronomy and Computing 28 (2019) 100285 7

Fig. 9. Scale asteroid 1.

Fig. 10. Scale asteroid 2.

models of increasing complexity on both the original SHAPE and
the new CUDA-SHAPE algorithm. Typically, many iterations are
needed to fit a modeled shape down to some threshold. A single
fitting iteration provides a good measure of performance because
it represents the smallest complete cycle of SHAPE and CUDA-
SHAPE. Details of the computer used to generate our results with
both algorithms are shown in Table 2.

The execution times for elliptical and harmonic models are
55%–80% lower than identical models run on the non-accelerated
older algorithm. Execution times are lowered by 90%–95% in
vertex models with vertex counts and resolution exceeding 2000
and 200 × 200, respectively. Table 3 shows the models we used
and their execution times on both algorithms.

Fig. 14 shows the speedup factors for each model. Ellipsoid and
harmonic models receive a 2.2x-5.5x speed boost while vertex
models with higher resolutions and higher vertex counts run
7.8x-19.3x faster.

Fig. 11. Scale asteroid 2.

Fig. 12. Scale asteroid 2.

Practical hardware limitations and best practices

There are no hard limits to model resolution, radar image
resolution, or POS resolution. However, CUDA-SHAPE stores the
POS images, observed and fit radar images for each frame in
each set in GPU memory for the duration of the modeling run.
Consequently, high-resolution models with many frames may run
into a limit with GPU memory. Consumer-level GPUs typically
have 12 GB or less of onboard memory as of early 2019 (the 1080
Ti card used for this paper has 11.5 GB). This has proven to be
sufficient for all models tested so far, including a 25,000-vertex
model with 801 × 801 POS image resolution and models with up
to 330 frames.8.

8 The 330-frame figure was not a hardware limit. Rather, no models with
more than 330 frames were available for testing

8 M. Engels, S. Hudson and C. Magri / Astronomy and Computing 28 (2019) 100285

Table 2
System specifications.
SHAPE baseline system configuration CUDA-SHAPE system configuration

• Intel i4790k 4-core CPU, 4000 MHz Baseline plus:
• 32 GB DDR3 2400 RAM • Nvidia GTX 1080 Ti, 1569–1683 MHz
• B85 chipset, SDD OS drive ◦ 11 GB GDDR5X video RAM
• Linux Mint 18.3, CUDA 9.1 ◦ 352 bit memory bus

Fig. 13. Scale asteroid 1 modeled with image noise.

Fig. 14. Speedup factors by model.

CUDA-SHAPE performs best with sets containing multiple
frames because the streamed frame calculations make better
concurrent use of the GPU hardware. POS image resolution should
be increased with increasing model vertex count. While Fig. 14
shows a general trend towards higher speedups in models with
higher vertex counts and POS image resolution, pure speed de-
pendence on either quantity is not so obvious. Below, Fig. 15
illustrates a generally decreasing speedup trend for a model with
increasing vertex count whose POS images are held to a constant
resolution of 501 × 501 pixels. Conversely, Fig. 16 shows a nearly
flat speedup factor for a 4096-vertex model with increasing POS
image resolution.

4. Discussion & conclusions

Our CUDA-SHAPE algorithm offers accelerated asteroid shape
modeling capable of operating with high resolution, high-vertex
count models that were very slow to simulate with the original

Fig. 15. Speedup for constant-POS-resolution model (501 × 501) with increasing
vertex count.

Fig. 16. Speedup for 4096-vertex model with increasing POS resolution.

SHAPE algorithm. A typical modeling run consists of a few ellip-
soid iterations followed by a few harmonic iterations followed
by vertex iterations of increasing resolution and vertex counts.
SHAPE spends a clear majority of its modeling time on these
more complex vertex models as is evident in Table 3. The overall
speedup factor provided by CUDA-SHAPE for any complete mod-
eling run is therefore closer to the factors of the complex vertex
models.

It must be noted that such measures of speed increases are,
by nature, relative. The execution times for the baseline SHAPE
algorithm depend heavily on the hardware it is executed on,
which is also true of the GPU hardware used for CUDA-SHAPE. A
newer Intel CPU will likely execute the non-accelerated algorithm
in less time than we have documented here, but it will always
be executed in very linear, serial fashion. Our parallelized and
streamed GPU-accelerated algorithm will also scale with new
hardware and provide solid improvements in modeling time.

Both SHAPE and CUDA-SHAPE internally consider ellipsoid and
harmonic models as vertex models with low vertex count and low
image resolution. The computational load of these models is low
enough that the non-accelerated algorithm can still somewhat
‘keep up’. As the execution times for the more complex models
in Table 3 show, CUDA-SHAPE can scale to complex models
(where complexity is a combination of image resolution and
vertex count) better than SHAPE. We therefore expect our new

M. Engels, S. Hudson and C. Magri / Astronomy and Computing 28 (2019) 100285 9

Table 3
Models and execution times on SHAPE and CUDA-SHAPE.
Model POS res. SHAPE time (s) CUDA-SHAPE time (s) Speedup factor

#1. Ellipsoid 151 × 151 4.4 2 2.2
#2. Harmonic (3) 201 × 201 23 6.9 3.4
#3. Harmonic (4) 201 × 201 34.5 8.8 3.9
#4. Harmonic (5) 201 × 201 47.8 10.1 4.7
#5. Harmonic (6) 201 × 201 71.3 14.8 4.8
#6. Harmonic (7) 201 × 201 90.5 17.5 5.2
#7. Harmonic (8) 201 × 201 113 21.5 5.3
#8. Harmonic (9) 201 × 201 145.1 29.5 4.9
#9. Harmonic (10) 201 × 201 165.2 37.6 4.4
#10. Harmonic (11) 201 × 201 188.8 37.2 5.1
#11. Harmonic (12) 201 × 201 227 42.7 5.3
#12. Harmonic (13) 201 × 201 261 47.7 5.5
#13. Vertex (1024) 151 × 151 606.7 125.7 4.8
#14. Vertex (2048) 201 × 201 2293.9 292.7 7.8
#15. Vertex (4096) 201 × 201 6871.7 630.9 10.9
#16. Vertex (6144) 251 × 251 12971.4 1220.2 10.6
#17. Vertex (8192) 351 × 351 34914.4 2475.2 14.1
#18. Vertex (8192) 651 × 651 102000.5 5298.5 19.3

algorithm’s best utility to be in high-resolution modeling of large
vertex models.

While CUDA-SHAPE implements only the SHAPE’s FIT action as
an accelerated GPU algorithm, it retains all of SHAPE’s code base
and therefore functionality. CUDA-SHAPE will be made available
to the radar observer community and current users of SHAPE.

References

Durech, J., Carry, B., Delbo, M., Kaasalainen, M., Viikinkoski, M., 2015a.
Asteroid models from multiple data sources. doi:10.2458/azu_uapress_
9780816532131-ch010.

Ďurech, J., Hanuš, J., Vančo, R., 2015b. Asteroids@home-a BOINC distributed
computing project for asteroid shape reconstruction. Astron. Comput. 13,
80–84. doi:10.1016/j.ascom.2015.09.004.

Hudson, S., 1994. Three-dimensional reconstruction of asteroids from
radar observations. Remote Sens. Rev 8 (1–3), 195–203. doi:10.1080/
02757259309532195.

Hudson, R.S., Ostro, S.J., 1995. Shape and non-principal axis spin state of asteroid
4179 toutatis. Science 270 (80), 84–86. doi:10.1126/science.270.5233.84.

Hudson, R.S., Ostro, S.J., 1999. Physical model of asteroid 1620 geographos from
radar and optical data. Icarus 140, 369–378. doi:10.1006/icar.1999.6142.

Levengood, et al., 2013. Asteroid shape modeling with CUDA. In: 44th Lunar
and Planetary Science Conference, 2013, pp. 1–2. https://doi.org/10.1029/
2008JE003195.

Nolan, M.C., Magri, C., Howell, E.S., Benner, L.A.M., Giorgini, J.D., Hergen-
rother, C.W., Hudson, R.S., Lauretta, D.S., Margot, J.L., Ostro, S.J., Scheeres, D.J.,
2013. Shape model and surface properties of the OSIRIS-REx target Asteroid
(101955) Bennu from radar and lightcurve observations. Icarus 226, 629–640.
doi:10.1016/j.icarus.2013.05.028.

Ostro, S.J., Scott, R., Hudson, M.C., Margot, J.-L., Scheeres, D.J., Campbell, D.B.,
Magri, C., Giorgini, J.D., Yeomans, D.K., 2000. Radar observations of asteroid
216 kleopatra. Science 288 (80), 836–839. doi:10.1126/science.288.5467.836.

Pineda, J., 1988. A parallel algorithm for polygon rasterization. ACM SIGGRAPH
Comput. Graph. 22, 17–20. doi:10.1145/378456.378457.

Press, W., Teukolksy, S.A., Vetterling, W.T., Flannery, B.P., 1992. Numerical
Recipes in C, second ed. The Art of Scientific Computing.

Scheeres, D.J., Fahnestock, E.G., Broschart, S.B., Bellerose, J., Jurgens, R.F.,
Jong, E.M De, Suzuki, S., 2006. Radar imaging of binary near-earth aster-
oid (66391) 1999 kw4. Science 314 (80), 1276–1280. doi:10.1126/science.
1133622.

http://dx.doi.org/10.2458/azu_uapress_9780816532131-ch010
http://dx.doi.org/10.2458/azu_uapress_9780816532131-ch010
http://dx.doi.org/10.2458/azu_uapress_9780816532131-ch010
http://dx.doi.org/10.1016/j.ascom.2015.09.004
http://dx.doi.org/10.1080/02757259309532195
http://dx.doi.org/10.1080/02757259309532195
http://dx.doi.org/10.1080/02757259309532195
http://dx.doi.org/10.1126/science.270.5233.84
http://dx.doi.org/10.1006/icar.1999.6142
https://doi.org/10.1029/2008JE003195
https://doi.org/10.1029/2008JE003195
https://doi.org/10.1029/2008JE003195
http://dx.doi.org/10.1016/j.icarus.2013.05.028
http://dx.doi.org/10.1126/science.288.5467.836
http://dx.doi.org/10.1145/378456.378457
http://refhub.elsevier.com/S2213-1337(18)30137-9/sb10
http://refhub.elsevier.com/S2213-1337(18)30137-9/sb10
http://refhub.elsevier.com/S2213-1337(18)30137-9/sb10
http://dx.doi.org/10.1126/science.1133622
http://dx.doi.org/10.1126/science.1133622
http://dx.doi.org/10.1126/science.1133622

	GPU-accelerated algorithm for asteroid shape modeling
	Introduction
	Structure
	Concepts of ground-based observational data

	Methods and implementation
	General approach
	Rasterization routine
	Doppler/delay-Doppler mapping
	Reductions
	Batch processing and streaming
	Algorithm verification

	 Results
	Verification results and algorithm limitations
	Noise
	Model accuracy
	Performance metrics
	Practical hardware limitations and best practices

	Discussion & conclusions
	References

