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The Shape of Eros
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The convex hull of Eros’ polar silhouette, estimated from radar echo spectra obtained
in 1975 by R. F. Jurgens and R. M. Goldstein (1976, Icarus 28, 1-15), provides new
information about this asteroid’s shape. Monte Carlo simulations are used to optimize the
estimation, to explore the nature and severity of associated errors, and to guide bias-
correction procedures. Eros’ hull is shaped like a rounded trapezoid, whose long and short
bases faced Earth during epochs of primary and secondary maxima, respectively, in
the January 1975 optical lightcurves. The nonaxisymmetric shape helps to explain odd
harmonics in Eros’ echo spectral signature as a function of rotation phase, whose
presence cannot be accounted for by homogeneous ellipsoid models. The extreme breadths
of Eros’ polar silhouette are within a few kilometers of 35 and 16 km. Additional con-
straints on Eros’ figure are obtained by inverting an optical lightcurve to estimate the
asteroid’s “mean cross section,” which is a two-dimensional average of the three-dimen-
sional shape. Eros’ mean cross section and polar silhouette have similar elongations.
The hull estimate permits previously reported radar time-delay and Doppler-frequency

measurements to be referenced directly to Eros’ center of mass.

I. INTRODUCTION

433 Eros, discovered by G. Witt in 1898, is
distinguished by being the first known Mars-
crosser, the first asteroid to show a light-
curve (von Oppolzer 1901), and the first as-
teroid to be observed while occulting a star
(O’Leary et al. 1976). The discovery of
Eros’ large orbital eccentricity attracted
considerable interest and catalyzed a series
of dynamical studies, including Russell’s
(1900) doctoral dissertation. Triangulation
of the distance to Eros and analyses of per-
turbations on Eros’ orbit provided the most
reliable values for the solar parallax and the
AU (.e., for the scale of the solar system
expressed in terrestrial units) until the ad-
vent of planetary radar ranging in the early
1960s (McGuire et al. 1961).

Eros made its closest approach to Earth
in this century (0.15 AU) on January 13,
1975, and was favorably placed for tele-
scopic investigation within several months
of that date. A campaign was organized to
seize this opportunity using available astro-
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nomical techniques, and the May 1976 issue
of Icarus was devoted to papers reporting
the observations. Zellner (1976) noted that
no other solar system body in its size range
had been so thoroughly observed, and sum-
marized the results as follows:

Newly available photometric, polarimetic, spec-
troscopic, thermal-radiometric, radar, and occul-
tation results are synthesized in order to derive a
coherent model for Eros. The geometric albedo is
0.19 = 0.01 at the visual wavelength, and the over-
all dimensions are approximately 13 x 15 x 36
km. The rotation is about the short axis, in the
direct sense, with a sidereal period of S"16™ 13.4°.
The pole of rotation lies within a few degrees of
ecliptic coordinates A = 16°and 8 = +11°. Eros
is uniformly coated with a particulate surface layer
several millimeters thick. It has an iron-bearing
silicate composition, similar to that of a minority
of main-belt asteroids, and probably identifiable
with H-type ordinary chondrites.

The constraints on Eros’ shape, derived
primarily from optical lightcurves (e.g.,
Dunlap 1976, Millis et al. 1976, Scaltriti and
Zappala 1976) and 3.5-cm radar observa-
tions (Jurgens and Goldstein 1976), were
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obtained within the framework of some
assumed, axisymmetric model. Such ap-
proaches were appropriate first approxima-
tions, but their inadequacy was apparent
from the presence of odd harmonics in
the lightcurves and in the rotation-phase
dependence of the radar signatures. In
analyzing the latter, Jurgens and Goldstein
(1976) used a homogeneous, triaxial ellip-
soid model (Jurgens 1982), but they warned
of that model’s inability to accommeodate
a strong, predominantly first-harmonic
wobble in the echo spectral shape. The
presence of the fundamental Fourier com-
ponent indicated that Eros’ figure and/
or it’s radar scattering properties are not
axisymmetric, but it was not at all clear
how one might obtain information about
the nature of the asymmetry.

Recently, Ostro et al. (1988a) introduced
a theoretical approach to asteroid echo-
spectral analysis that follows naturally from
the geometric relation between spectral
edge frequencies and the shape of a rotating
asteroid. This approach uses the extent of
the spectra to determine the convex enve-
lope, or hull, of the asteroid’s polar silhou-
ette—a pole-on projection of the asteroid
with concavities ‘‘filled in.”” Ostro et al.
(1988a) showed how to estimate the hull,
developed error-analysis techniques, and
studied the relation between the accuracy
of a hull estimate and the parent data set’s
signal-to-noise ratio.

Here we estimate Eros’ hull and use the
results to evaluate, and in a few instances
refine, the 1976 constraints on the aster-
oid’s physical properties. In the next sec-
tion, we describe the Eros radar data set
used in our calculations. In Section III, we
briefly review important geometric rela-
tions and hull estimation mathematics, and
then describe in considerable detail the
logic and procedures underlying optimiza-
tion of our hull estimator. Practical aspects
of hull estimation not confronted by Ostro
et al. (1988a) are addressed here. For ex-
ample, for a given set of echo spectra, the
accuracy of a hull estimate turns out to
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depend on the data set’s frequency resolu-
tion and rotation-phase resolution. The
Eros data are ‘‘overresolved’ in each do-
main, forcing us to smooth the data and
to search for the best phase/frequency
filter. In Section IV, we present our esti-
mate of Eros’ hull and then, armed with
new information about the asteroid’s
shape, revisit several intriguing character-
istics of the optical and radar data.

II. THE EROS RADAR DATA

We worked with 199 echo spectra from
Goldstone X-band (8495-MHz, 3.53-cm) ob-
servations conducted on January 19, 24, 25,
and 26, 1975 (Table I of Jurgens and
Goldstein 1976). On these dates, reception
was in the sense of circular polarization or-
thogonal to that transmitted. These ““OC™’
echoes, which contain most of the power in
back-reflections from smooth components
of Eros’s surface, are approximately three
times stronger than the SC (same circular)
echoes.

The raw frequency resolution was 1.95
Hz on January 19 and 2.73 Hz on the
last three dates; we interpolated between
spectral estimates from the January 19 data
to find values at 2.73-Hz intervals. Eros’
echo bandwidth was known to range from
~300 to ~700 Hz, so the fractional spectral
resolution was ~0.01. The echoes lie near
the middle of a spectral window ~1200 Hz
wide.

The integration time per spectrum was
~150 sec, during which Eros rotated
through 2.8° of rotation phase. The rota-
tion-phase coverage of the 199 spectra is
very thorough and fairly uniform, with no
gaps larger than 6°.

The spectral elements have units of stan-
dard deviations of the receiver noise, and
each spectrum is tagged with vy, the value
of the standard deviation in units of square
kilometers of radar cross section per 2.73-
Hz resolution cell. ¥ is constant for any
given spectrum, but varies between spectra
because of run-to-run variations in radar
system sensitivity and target distance.
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FiG. 1. Geometric relationships between an as-
teroid’s shape and its echo power spectrum. The plane
P, contains the line of sight and the asteroid’s spin
vector. Echo from any portion of the asteroid intersect-
ing ¥, has Doppler frequency f;. The cross-hatched
strip of power in the spectrum corresponds to echoes
from the cross-hatched strip on the asteroid. The x, y
coordinate system (dark lines) rotates with the asteroid.
Reproduced, with permission, from Ostro et al.
(1988a).

III. THEORY AND PRACTICE OF
HULL ESTIMATION

A. Geometric Relations and Definitions

Figure 1 sketches the relation between an
asteroid’s hull and an echo power spectrum
obtained at rotation phase 8. One can think
of the hull, H, as the shape of a rubber band
stretched around the projection of the aster-
oid onto its equational plane.
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An asteroid’s instantaneous echo power
spectrum has a bandwidth given by

B = (4w D/\P) cos 8, (1)

where P is the apparent spin period, 8 is
asteroid-centered declination of the radar,
and D is the sum of the ‘‘support distances’’
p. and p_ from the plane ¢, containing the
asteroid’s apparent spin vector ) and the
line of sight 7o the surface elements with the
greatest positive (approaching) and negative
(receding) radial velocities. In the figure, the
planes ¢, and 4s_ are parallel to ¢, and tan-
gent to the asteroid’s approaching and re-
ceding limbs; ¢, and y_ are at distances p,
and p_ from ¢; f;, f., and f_ are the Dop-
pler frequencies of echoes from portions of
the asteroid intersecting ¥y, ¥, , and ¢ _; and
B=f —f_ =4ma(p. + p_)YAP) 'cos .
The “‘support function,” p(8) = p_ (8) =
p_(6 + 180°), is a periodic function of rota-
tion phase 8. Santalé (1976) shows that

p(0) + p"(0) = r6), 2

where the primes denote differentiation with
respect to 6, and r(0) is the radius of curva-
ture of H where ¢, touches H. The Carte-
sian coordinates of H are given by

x(6) = p(0) cos 8 — p’(f) sin 6
y(6) = p(6) sin 6 + p'(@) cos 6,

where the x, y coordinate system (dark lines
in the figure) rotates with the asteroid.

i

1

B. Mathematics of Hull Estimation

Henceforth, we assume prior knowledge
of the asteroid’s apparent rotation period.
For the moment, let us also assume that we
know the Doppler frequency f, correspond-
ing to echoes from the center of mass.

Estimation of H can be thought of as a
three-step process:

Step 1. Generate a data vector of support
function estimates from the spectra. We de-
rive two numbers, p(6) and p(8 + 180°), from
a spectrum acquired at rotation phase 6, so
L spectra yield a 2L-element data vector.
Note: In this section, we use hertz as the
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units for the support function and the hull,
postponing until Section IV the conversion
to kilometers, which requires a value of 8.

Step 2. Use least squares to fit an M-har-
monic Fourier series to the data vector. That
series has the form

M

p@® = > a,cosnd + b,sinng. (4)
n=0

Let boldface denote matrices and T denote
transpose. We define the data vector of sup-
port-function estimates

, P2r) &)

and the vector of Fourier coefficients

pT =, p2 . ..

XT= (x],xz,. . .,x2M+1)

-5 Ay bM) (6)

If the errors ¢ in the support-function esti-
mates p are random variables with zero
mean and covariance matrix M = {(geT),
then the weighted-least-squares estimate of
xisk = B"'AT™ " !p, where B = ATM'A
and the i row of A is (1, cos 6;, sin 6;, cos
26;, sin 26,, . . . , cos L#;, sin LG;). The
weighted sum of squared residuals, Q(x) =
(p — Ax)™(p — Ax), defines a quadratic
hypersurface with minimum Q(X). The co-
variance matrix for errors in the parameter
estimates is V = B~ ! and the Fourier model
for the data is p = Ax%.

Since H is convex, its radius-of-curvature
function is nonnegative:

H6) = p(6) + p"(0) = 0. )

= (ao, al,bl,az, bz, ..

In practice, our estimate of H will be an N-
sided convex polygon corresponding to a
model support function that satisfies

rQmkiIN) = r6,) = p(6,) + p"(6,) = 0,
k=1,...,N. (8

These N inequality constraints would ‘‘au-
tomatically’’ be satisfied by X if the spectra
were continuous, contained no noise, and
were available as a continuous vector func-
tion of rotation phase. In practice, echo
spectra are discrete and noisy, and sample
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rotation phase imperfectly, so X might not
satisfy those constraints even though it
minimizes the weighted sum of squared
residuals Q(x), and an additional step is
required.

Step 3. Find the value % of x that mini-
mizes Q(x) subject to the N inequality
constraints. X is the closest point to %
(in the B metric) that corresponds to a
nonnegative radius-of-curvature function.
Our task, to minimize the quadratic form
(x — ®)TB(x — %) subject to the constraints,
is an example of the strictly convex qua-
dratic programming problem. Ostro and
Connelly (1984, Section 1IC and Appendix
B) describe this problem and its solution
via a recursive projection method. For
all the work described in this paper, we
truncated Fourier series to M = 10 har-
monics and applied the inequality con-
straints at N = 96 rotation phases.

C. Accuracy of Hull Estimation:
Spectral-Frequency Resolution and
Rotation-Phase Resolution

Whereas execution of steps 2 and 3 is
straightforward, the best way of estimating
the spectral edge frequencies (step 1) is
not known. For simplicity, we use the
closest zero crossings to f, as the values
of p(6) and p(# + 180°) associated with a
spectrum taken at rotation phase 6. Note
that this or any other support-function esti-
mator might introduce systematic uncer-
tainty into the hull estimation. This uncer-
tainty will not be known a priori because
the true shape of the spectral edges is
unknown, so it will be prudent to assess the
severity of systematic errors by performing
numerical simulations.

We expect our *‘zero-crossing estimator’’
to yield hulls whose accuracy depends on
the frequency resolution, the rotation-phase
sampling, and the signal-to-noise ratio of the
parent spectra. For the Eros data, the ‘‘to-
tal’’ signal-to-noise ratio (SNR) of the opti-
mally filtered, weighted sum of all the spec-
tra is about 70 standard deviations. Given



338

the analysis of Ostro et al. (1988a), we knew
that with an SNR that low, estimation of H
from the raw spectra would be very inaccu-
rate. That is, the spectra are so finely re-
solved that the echo edges are overwhelmed
by noise, and application of the zero-cross-
ing estimator would yield a hull with a size
much smaller than the true one and presum-
ably with a grossly incorrect shape.

To overcome the low SNR of the Eros
spectra, we can either (i) smooth the spectra
to a coarser frequency resolution, thereby
improving their SNR, and/or (ii) form
weighted averages of several spectra taken
at similar rotation phases, i.e., increase the
SNR by smoothing the spectra to a coarser
rotation-phase resolution. Of course, we
would like to do this “‘frequency and/or
phase filtering”’ in a manner that optimizes
the accuracy of the hull estimate. The fol-
lowing strategy was used to evaluate any
given choice of frequency resolution and
phase resolution:

i. Use Jurgens and Goldstein’s (1976) tri-
axial ellipsoid model to generate 199 noise-
free echo spectra having 2.73-Hz resolution
and the same relative phases as the actual
Eros spectra.

ii. Add Gaussian noise supplied by a ran-
dom number generator to each of the model
spectra, scaling the standard deviation of
the noise to match that in the corresponding
spectrum of the actual data.

iti. Smooth the noise-contaminated model
spectra to a frequency resolution Af and a
phase resolution A¢ (Appendix).

iv. Estimate the model’s hull according to
the three-step procedure described earlier.
Then compare the estimate, H(A8, Af), to
the true hull (a known ellipse), and assess
the accuracy provided by this choice of
phase/frequency smoothing.

In (ii), note that the vector of noise consti-
tutes a single realization of the parent ran-
dom process. To better assess the variance
of this estimator, we repeated the simula-
tion for five independent noise realizations.
This entire, five-realization simulation was
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done for each choice of phase/frequency
smoothing.

D. Optimization with Respect to A6
and Af

Figure 2 shows results for all nine combi-
nations of the values: A8 = 15°, 20°, and
25°, and Af = 25, 30, and 35 Hz, covering
the region yielding the most satisfactory re-
sults. The accuracy of H(A8, A f) deterio-
rates rapidly outside this region.

It is useful to define a simple measure of
the **distance”’ () between two hulls H, and
H, as the root-sum-square of the distances
between those two polygon’s corresponding
vertices:

N
NQ? = ,; [ — x2 + (v — v . (9)

The figure gives the mean value and rms
dispersions of the error distance between
H(Ao, A /) and the true (elliptical) hull for
each of the nine, five-simulation sets. In
each set, the five distances’ mean value
quantifies the estimator’s bias. The square
of the five distances’ dispersion about their
mean can be taken as a crude indicator of
the estimator’s variance.

The minimum-bias estimator in the figure
is at (A6, Af) = (20°, 30 Hz), but the differ-
ences among the nine values of (A8, Af)
do not seem highly significant. Therefore,
although we will refer to E(20°, 30 Hz) as
the optimum estimator, we will apply all
nine estimators to the Eros data, and will
use the spread in the results as a gauge of
estimation error.

Our estimator recovers the true hull’s
maximum breadth quite accurately but over-
estimates the minimum breadth by ~20%.
This positive bias in the estimated hull’s min-
imum dimension probably is caused by a
combination of the limited SNR and the fact
that the minimum-bandwidth orientation is
seen very briefly, despite the fairly uniform
and thorough phase coverage provided by
the Goldstone data. (Note that phase filter-
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FiG. 2. Hull estimates for simulations designed to explore the dependence of estimation accuracy on
the data’s frequency resolution (A f) and rotation-phase resolution (A8). The dotted profile is the true
hull of an ellipsoidal model asteroid and the solid curves are estimates derived from simulated echo
spectra contaminated with noise. The five profiles at any given value of (A f, Af) correspond to five
different realizations of the noise-generating random process. The difference between a hull estimate
and the true ellipse is quantified by an error distance () defined in Eq. (9), and this figure gives the
mean value and rms dispersion of Q for each five-simulation set.

ing ‘‘works against” our seeing the mini-
mum echo bandwidth, but would not keep
us from seeing the maximum bandwidth.)

E. Center Frequency as a Free Parameter

So far, we have assumed prior knowledge
of f,, the Doppler frequency corresponding

to echoes from Eros’ center of mass. In real-
ity, that frequency is a function of time,
t. During the Eros radar observations, the
receiver was continuously tuned to the
echo wusing a prediction ephemeris
that later proved to be accurate to within
several tens of hertz (Fig. 2 of Jurgens
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Fi1G. 3. Sensitivity of the hull estimators to center frequency for the model-ellipsoid simulations
described in Section IIIE. The nine blocks of curves correspond to the nine drawings in Fig. 2. Within
each block, the five curves correspond to five different noise realizations, as in Fig. 2. RWMS, defined
in Eq. (10), is the root-weighted-mean-square residual between support-function data p and the support-
function values f) corresponding to a hull estimate. Here, RWMS is plotted on arbitrary linear scales
versus the center frequency f; used in the estimation, measured with respect to the true value.

and Goldstein 1976). The variation of the
Doppler prediction error during the week
of observations was expected to be much
less than the data’s frequency resolution
(2.73 Hz).

Henceforth, let f; represent Eros’ echo
center frequency relative to the observing
ephemeris. We wish to treat this offset as a
free parameter, so we explored each estima-
tor’s sensitivity to f; by repeating each of
the 45 simulations in Fig. 2 six more times,
offsetting f; from its true value by =5, =10,

and =15 frequency resolution cells. For
each simulation, we calculated the root-
weighted-mean-square  postfit  residual
RWMS, defined by

RWMS?

2L 2L
= [Zl (p;i — b s;z]/[_Zl sr2], (10)

and plotted the five-simulation-average
RWMS versus offset frequency in Fig. 3.
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F1G. 4. *“‘Raw’’ estimates of Eros’ hull at nine values of phase/frequency resolution. The maximum
and minimum breadths for the optimal estimate, H(20°, 30 Hz), are indicated. All profiles are plotted
at the same scale. For each profile, the center of rotation is denoted by a tiny dot and the centroid is
denoted by a large symbol. Dotted replicas of the eight profiles on the figure’s periphery are superposed
on H(20°, 30 Hz). The simulations described in Section I1ID indicate that these estimations are biased,
with the hull’s minimum dimension being overestimated by ~20%. A bias-corrected version of the

central drawing is shown in Fig. 6. See text.

On average, RWMS’s minimum appears to
be within ~10 Hz of the true value of f,
although biases as large as ~20 Hz are evi-
dent in some of the individual curves.

IV. EROS’ SHAPE
A. The Hull Estimate

Figure 4 shows results of applying each
of the nine best estimators (Fig. 2) to the

Eros data. The center drawing superposes
H(20°, 30 Hz) and dotted replicas of the eight
other estimates to permit more direct com-
parison of the profiles’ sizes and shapes.
Table I gives corresponding values of the
hull’s maximum and minimum widths, their
ratio, and the distance of each estimate of
Eros’ hull from H(20°, 30 Hz). Table I also
lists the goodness-of-fit statistic RWMS.
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TABLE 1

“RAW’’ EROS HULL ESTIMATES?

Af =25Hz Af =30 Hz Af =35Hz
Distance (Hz) from A(20°, 30 Hz)
Ag = 25° 26.0 25.0 28.0
Ag = 20° 37.3 0 12.5
Ag = 15° 56.7 42.8 31.8
Support-function RWMS (Hz)
Ag = 25° 42.8 45.5 51.6
A6 = 20° 41.0 42.6 44.5
Ag = 15° 48.5 S1.1 48.0
“‘Raw’’ maximum dimension (Hz)
Ag = 25° 638 663 702
Ag = 20° 638 651 668
Ag = 15° 630 647 666
‘‘Raw’’ minimum dimension (Hz)
Ag = 25° 368 397 414
Ag = 20° 343 397 406
Ag = 15° 296 356 373
“Raw’’ Elongation
Ag = 25° 1.74 1.67 1.70
A6 = 20° 1.86 1.64 1.65
Af = 15° 2.13 1.82 1.79

2 Results for each of the nine estimators E(A8, Af), where A¢ and Af are the rotation phase and spectral
frequency resolutions. Table II shows results of applying bias corrections described in the text to the three lower

3 X 3 subtables.

The minimum in RWMS at (A6, Af) = (20°,
25 Hz) is not a global minimum; another,
nearly identical, local minimum occurs at
(A6, Af) = (20°, 15 Hz).

In Fig. 4, the Earth is toward the bottom
of the page and the hull rotates clockwise
about its center of mass (the small dot). We
have rotated H(20°, 30 Hz) to bring its mini-
mum dimension normal to the line of sight
with the longest side on the receding limb.
We define this orientation to have rotation
phase 8 = (0°. Equivalent ‘‘minimum-
breadth’’ orientations of the eight other esti-
mates occur at rotation phases within 2.5°
of 0°. This is excellent agreement in view of
the 2.8° phase resolution of the individual
spectra and the angular quantization (360°/
N = 3.75°) used in our estimations. Conse-

quently, we have rotated all nine hull esti-
mates in Fig. 4 by the same amount.

Additional results associated with Eros’
hull estimation are shown in Fig. 5 for the
calculation of H(20°, 30 Hz). The left box
shows p and p, and the right box shows the
radius-of-curvature functions f and #. The
hull’s bandwidth function,

BO) = ) + f6 + 180°, (11)

is the uppermost curve in the top left plot;
note that it contains only even harmonics.
The corresponding ‘‘middle frequency
function,”’

Fud® = [3(0) — P8 + 1809172, (12)

is the lowest curve in that plot; note that it
contains only odd harmonics.
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F1G. 5. Quantities associated with Eros’ hull estimation, shown here for the calculation of ﬁ(ZO", 30
Hz), which is the solid profile in the center of Fig. 4. In the left-hand box, the vertical bars represent

the support-function data p; obtained from the echo

spectra; each bar extends from p; — g;top; + g,

where the errors g; were determined a posteriori, as described in the Appendix. The solid curve through
the support-function data is p, the unconstrained Fourier model. The dotted curve through the data is
p, the closest Fourier model to p yielding a nonnegative radius-of-curvature function; p corresponds
to the hull estimate via Eq. (3). The hull's bandwidth function B(6) and middle- frequency function
f‘mid(f)) are defined by Egs. (11) and (12). The radius-of-curvature functions f and # in the right-hand

figure are related to p and p via Eq. (2).

The support function data are shown as
vertical bars extending from p; — ¢, to p; +
g;, where the values of the errors ¢; were
determined a posteriori, as described in the
Appendix. Note that the fractional precision
of individual support-function estimates is
very low; the leverage in determining H is
furnished by the geometrical constraints in
Eq. (7), i.e., by the fact that we are estimat-
ing a convex quantity.

How can we gauge the uncertainty in our
estimate of Eros’ hull? Recall from the dis-
cussion of the ellipsoid simulations that the
systematic uncertainty in E(A8, Af) is quan-
tified by the mean error distance Q associ-
ated with any particular estimator, while the
statistical uncertainty in E(Af, Af) is quan-
tified by Q’s rms dispersion (Fig. 2). For
E(20°, 30 Hz), {)’s mean and rms values are
16.7 = 5.5 Hz, so the systematic uncertainty
is several times more severe than the statis-
tical uncertainty. The sum of these two error
components is 22.2 Hz, which is 72% as
large as the average distance (31 Hz) of the

solid profile [H(A8, Af)] from the dotted
profiles in Fig. 4 and 40% as large as the
maximum distance (56.7 Hz) of the solid
profile from a dotted profile. Thus, the “‘col-
lective smear”’ of the profiles in the center
drawing of Fig. 4 overstates the magnitude
of the total error in our optimum estimator.

B. Bias Correction

As discussed earlier, the ellipsoid simula-
tions yielded hull estimates whose longest
dimension was estimated quite accurately
but whose shortest dimension was overesti-
mated by up to ~20%. Table 11 gives correc-
tion factors which, when multiplied by the
five-realization-average values of the ex-
treme breadths of the estimated hulls, result
in the extreme breadths of the ellipsoid’s ac-
tual, elliptical hull. For example, that ellipse
has minimum and maximum breadths that
are 82 and 100% of those of the five-realiza-
tion-average value for the optimal estimator
E(20°, 30 Hz). Thus, if we express Eros’ hull
estimate in a Cartesian coordinate system
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Fi1G. 6. Bias-corrected estimate of the convex hull
of Eros’ polar silhouette. Each profile in the central
drawing of Fig. 4 has been scaled by the horizontal and
vertical correction factors in Table II. The solid profile
is our final hull estimate, corresponding to a phase/
frequency filter (A9, A f) = (20°, 30 Hz), and the dotted
profiles correspond to the other eight choices of (A8,
Af) in Fig. 4. As discussed in the text, the arrows
indicate orientations at epochs of lightcurve extrema
(Millis er al. 1976), the radar time delay measurement
by Campbell et al. (1976), and the stellar occultation
observations by O’Leary et al. (1976).

with x and y axes parallel to the ellipse’s mi-
nor and major axes, respectively, and then
multiply the hull’s xand y coordinates by 0.82
and 1.00, we can compensate for the most se-
rious bias in our estimator.

We have applied bias corrections to the
nine estimates of Eros’ hull in Fig. 4. Figure
6 shows a bias-corrected version of the cen-
tral drawing from Fig. 4, and Table II lists
the corresponding hull dimensions. Since
we wish to ensure that errors assigned to
Eros’ hull estimate and derived quantities
are not underestimated, we will quote un-
certainties based on the total range of values
spanned by the nine, bias-corrected estima-
tions, and whenever practicable will express
the results as an interval estimate (Freund
and Walpole 1980).
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C. Size and Shape of Eros’
Polar Silhouette

For the bandwidth equivalents of the
maximum and minimum dimensions of
Eros’ hull, our bias-corrected estimations
yield

638 = B, = 681 Hz
263 = B, < 329 Hz.

(13)

Eros’ synodic spin period during the
radar observations was 0.21954 + 0.00001
day = 5.2689 = 0.0002 hr (Dunlap 1976,
Table IV). Substituting that value into Eq.
(1) yields a conversion factor of (0.05327/
cos 8) km Hz~'. Constraints on Eros’ pole
direction (Dunlap 1976, Millis et al. 1976,
Scaltriti and Zappala 1976, Drummond et al.
1985, Drummond and Hege 1989) establish

TABLE II

Bias-CoRRECTED Eros HULL ESTIMATES?

Af =125 Af =30 Af =35
Hz Hz Hz

Bias-correction factors from
ellipsoid simulations

(x, y) x, y) x, y)
Ag = 25° 0.84,1.00 0.82,098 0.79,0.97
A = 20° 0.86,1.02  0.82,1.00 0.81,0.98
Ag = 15° 0.89,1.05  0.85,1.01 0.84,0.99
Maximum dimension (Hz)
Ag = 25° 638 650 681
Ag = 20° 651 651 655
Af = 15° 662 653 659
Minimum dimension (Hz)
AG = 25° 309 326 327
A6 = 20° 295 326 329
Af = 15° 263 303 313
Elongation
A = 25° 2.06 1.99 2.08
Af = 20° 2.21 2.00 1.99
Af = 15° 2.52 2.16 2.11

¢ The three lower 3 X 3 subtables show results of
correcting corresponding values in Table I for bias in
the hull estimators, by multiplying the maximum and
minimum dimensions by the x and y correction factors
given in the top subtable.
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that |8| was no more than ~10° from zero
during the radar observations, i.e., that cos
8 was within a few percent of unity. Thus,
converting units establishes a length scale
for the extreme dimensions of Eros’ hull:

34 =D, =37 km

(14)
14 <D, =< 18 km.

These intervals are in decent agreement
with the extreme dimensions of various axi-
symmetric models of Eros reported in the
literature, including Zellner’s (1976) consen-
sus dimensions (16 x 37 km) and Lebofsky
and Rieke’s (1979) values for a thermal
model based on a cylinder with hemispheri-
cal ends (16.1 = 0.8 km X 39.3 = 2.0 km).

Eros’ hull is shaped like a trapezoid
whose bases have different lengths and
whose sides are distinctly nonparallel. The
polar silhouette is clearly not axisymmetric,
suggesting that some of the odd-harmonic
character of the 1975-1976 optical light-
curves and radar echoes can be attributed
to the asteroid’s shape, as discussed further
below.

D. The Hull’s Centroid

In Figs. 4 and 6, the hull’s center of rota-
tion, i.e., Eros’ center of mass, is indicated
by a dot, while the hull’s centroid is marked
by a large symbol. The offset of the hull’s
centroid from Eros’ center of mass, between
1 and 2 km, constrains Eros’ mass distribu-
tion, albeit very loosely. A modest concav-
ity along the silhouette’s lower left edge of-
fers a simple explanation for the offset, but
there obviously are a myriad of other possi-
bilities.

E. Eros’ Echo Power Spectra Reuvisited

Figure 7 plots weighted sums of the Eros
echo spectra within 12 30°-wide windows
centered on 8 = 0°,30°, . . ., 330°. Above
each spectrum is a replica of the bias-cor-
rected estimate of Eros’ hull (the solid pro-
file in Fig. 6), drawn at the same linear scale
as the Doppler axis and at the indicated rota-
tion phase (cf. Fig. 1).
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Note how the spectral bandwidth tracks
the horizontal breadth of the hull. The
reader might wish to follow Eros through a
full rotation, exploring the relation between
spectral shape and the inclination of the
hull’s boundary to the line of sight. In con-
trast to the situation at optical wavelengths,
radar backscattering laws for virtually all
planetary surfaces studied so far exhibit
limb darkening. To the extent that the hull
reveals the orientation of surface elements
responsible for the radar echoes, we expect
some correlation between a spectrum’s am-
plitude at any given Doppler frequency and
the angle of incidence at the corresponding
point on the hull. Some correlation of this
sort is indeed present at several
phases—more normally oriented portions
of the hull often appear to return more echo
power.

The 12 spectra comprise six pairs of spec-
tra taken ~180° apart. The differences be-
tween ‘‘opposing’’ spectra constitute odd
harmonics in Eros’ spectral signature,
which were noted by Jurgens and Goldstein
(1976). These differences, plus the fact that
the hull’s middle-frequency function fmid(o)
wobbles around zero (Fig. 5), demonstrates
that the asymmetry in the shape of Eros’
polar silhouette explains that characteristic
of the echoes.

F. Rotation Phase of Eros’ Hull: Relation
to Lightcurve Extrema

A UTC epoch near the middle of the week
of Goldstone observations and correspond-
ing to & = 0°is 1975 January 23.34758. Millis
et al. (1976) report epochs of lightcurve ex-
trema, which they identify as Max 1, Min 1,
Max 2, and Min 2. Those authors translate
epochs to the asteroid’s frame, while we
retain an observatory-based frame, which
is ‘‘uncorrected for light time.”’ Taking the
difference between these two conventions
into account, we find that the Min 1 configu-
ration occurred 0.00063 day, or 54 sec, or
1.0° of rotation phase, before the minimum-
breadth configuration.
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F1G. 7. Eros echo spectra and hull at 12 rotation phases. Weighted sums of spectra within 30°-wide
windows have been filtered to a frequency resolution A f = 40 Hz and plotted on identical, linear scales
of echo power versus Doppler frequency. A horizontal line is drawn at zero echo power. A vertical
bar at the origin indicates +1 standard deviation of the receiver noise. A replica of Eros hull estimate,
the solid profile in Fig. 6, is drawn above each spectrum at the same scale as the Doppler frequency
axis and at the indicated, weighted-mean rotational phase. The phases are rarely integral multiples of
30° because the data’s phase coverage is not perfectly uniform.

During January 19-26, Max 1 was the pri-
mary maximum (~0.1 mag brighter than
Max 2), and Min 2 was the primary minimum
(~0.1 dimmer than Min 1). Thus, as
sketched in Fig. 6, the primary maximum
occurred when Eros’ longest side was facing
Earth. At the secondary maximum, the op-
posite side of the asteroid faced the viewer
and the hull’s projected length was the same
as at primary maximum, but less of it was
normally oriented at secondary maximum
than at primary maximum.

If we were dealing with a two-dimensional
asteroid, then these differences in the distri-
bution of incidence angle, coupled with the
assumption that the asteroid is limb-dark-
ened, would furnish a simple explanation for
the difference between the lightcurve max-
ima; the same logic would explain the differ-

ences between the lightcurve minima. How-
ever, the solar phase angle (i.e., the
Sun-Eros-Earth angle) was within 1° of 9°
during the radar observations, and very little
limb darkening is expected this close to op-
position (e.g., French and Veverka 1983,
Hapke 1986, Lumme and Bowell 1981).

In the absence of limb darkening (i.e., for
purely geometric scattering), odd harmonics
in the lightcurve can arise from many differ-
ent kinds of shape effects and albedo varia-
tions. However, the differences between
matched extrema constitute roughly 10% of
the lightcurve amplitude while optical polar-
ization and color variations are only at the
~1% level (Zellner and Gradie 1976, Larson
et al. 1976, Pieters et al. 1976, Miner and
Young 1976, Tedesco 1976, Veeder et al.
1976), so it seems likely that the lightcurve
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characteristics are caused more by Eros’
shape than by photometric heterogeneity.

G. Lighicurve Inpérsion: Estimation of
Eros’ Mean Cross Section

If Eros’ lightcurves are attributable pri-
marily to the asteroid’s shape, what can the
lightcurves tell us about that shape? Ostro
et al. (1988b) show that under certain ideal
conditions, one can use ‘‘convex-profile in-
version’’ of a lightcurve to estimate a profile
which, unlike the hull, is a two-dimensional
average of the asteroid’s shape. That profile
is called the mean cross section, C, and is
defined as the average of the envelopes on
all the surface contours parallel to the equa-
tor. The ideal conditions for estimating C
include Condition GEQO, that the scattering
is uniform and geometric; Condition EVIG,
that the viewing-illumination geometry is
equatorial; and Condition PHASE, that the
solar phase angle ¢ is known and nonzero.
The logic behind these conditions is that
they collapse the three-dimensional light-
curve inversion problem, which cannot be
solved uniquely, into a two-dimensional
problem that can.

During late January 1975, the sub-Sun and
sub-Earth points were not very far from
Eros’ equator and, given the 9° solar phase
angle, the scattering was probably almost
geometric. Condition EVIG, that the sub-
Earth and sub-Sun points lie on the equator,
and Condition PHASE imply that the solar
phase angle’s ‘‘equatorial component” ¢,
equals ¢ itself; this component of ¢ creates
the mapping between odd harmonics in C
and those in the lightcurve. If ¢, = 0, then
an equatorial lightcurve of a uniform, geo-
metrically scattering asteroid will contain no
odd harmonics. For this reason, inversion of
an opposition lightcurve furnishes an even-
harmonic-only version of C called the aster-
oid’s ‘‘symmetrized mean cross section,”
C,. The accuracy of an estimate of C can
be degraded if the value of ¢ used in the
inversion is very different from ¢.,. For
Eros, available pole-direction estimates
(Dunlap 1976, Millis et al. 1976, Scaltriti
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and Zappala 1976, Drummond et al. 1985,
Drummond and Hege 1989) have uncertain-
ties on the order of 15°, so it is hard to say
whether ¢, is closer to zero or ¢.

A subtlety of Condition PHASE is that the
sign of ¢ used in ‘‘convex-profile inversion™’
corresponds to the asteroid’s rotation sense.
The sign is positive if the asteroid rotates
through ¢ from the Earth direction to the
Sun direction, a configuration that pertains
to Eros in late January 1975 if, as deduced
by Dunlap (1976) and Morrison (1976), the
asteroid’s rotation is direct.

Convex-profile inversion of an Eros light-
curve obtained by Tedesco (1976) on Jan 20
at ¢ = 9° yields the estimates of C and C,
shown in Fig. 8. These averages of Eros’
shape rotate clockwise and are shown at
¢ = 0° as in the hull figures. The Earth
direction is toward the bottom of the figure
and the Sun direction is 9° clockwise from
there.

Our estimate of Eros’ mean cross section
is “‘tapered,”’ and some support for the va-
lidity of this result is offered by Lebofsky
and Rieke (1979), who argue that a tapered
shape can help to explain aspects of the as-
teroid’s thermal-infrared signature (i.e., the
IR lightcurve as a function of wavelength
between 1.2 and 22 um) observed by those
authors and by Morrison (1976). Brown
(1985) has used radiometric models based
on ellipsoids to demonstrate that diur-
nal-thermal lightcurves depend dramati-
cally on asteroid shape; however, axisym-
metric models might prove inadequate for
highly irregular asteroids. In this context,
we suggest that our estimate of Eros’ mean
cross section reveals shape characteristics
responsible for odd-harmonic components
of the asteroid’s thermal-IR ‘‘emission”
lightcurve as well as phase differences be-
tween the emission and ‘‘reflected-light”’
curves.

For the circumstances at hand, we expect
the estimate of the mean cross section’s
breadth ratio, 8* = 2.36, to be accurate to
several percent. We stress that this elonga-
tion pertains not to Eros’ three-dimensional
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F1G. 8. Eros’ mean cross section C, a two-dimen-
sional gqverage of the asteroid’s shape. The solid profile
is the estimate of C and the dotted profile is its symme-
trization C;, as described in the text. The profiles were
derived from Tedesco’s (1976) lightcurve via convex-
profile inversion (Ostro et al. 1988b). The profiles rotate
clockwise and are shown at rotational phase 8 = 0°.
Earth’s direction is toward the bottom of the figure and
the Sun’s direction is 9° clockwise from there. At left,
the large symbols are the lightcurve data, the solid
curve is a Fourier model fit to the data, and the dotted
curve is the model lightcurve corresponding to the esti-
mate of C.

shape but to a two-dimensional average of
that shape. Nevertheless, since the ‘‘con-
tour averaging’’ implicit in the definition of
C and C, is done in radius-of-curvature
space (Appendix A of Ostro and Connelly
1984), the largest contours are weighted
most heavily, so we should not be surprised
that 8* is similar to the hull’s elongation,
Do/ Dyins Which apparently lies between
1.9 and 2.6 (Table II).

Our estimates of Eros’ hull and mean
cross section have their longest sides on the
receding limb at zero rotational phase. Per-
haps that face of Eros lacks prominent posi-
tive relief. For the other ‘‘sides,’” we specu-
late that the apparent differences between
the curvatures of C and H arise from inter-
esting topographic structure off Eros’
equator.

H. Astrometric Results Referenced to
Eros’ Center of Mass

Echo Doppler frequency. Recall from
Section IIIE that one of our goals was to
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estimate f,, the Doppler frequency corre-
sponding to echoes from Eros’ center of
mass, measured with respect to the predic-
tion ephemeris. Figure 4 is the culmination
of a search for the value of f, that minimizes
the postfit RWMS, defined in (10). The opti-
mum estimator gives f; = —17 Hz and the
eight surrounding estimators give values be-
tween —24 and — 13 Hz. Correcting the ob-
serving ephemeris by — 17 *= 15 Hz, we ob-
tain the Doppler frequency estimate in Table
111

Echo time delay. During the week of the
Goldstone experiment, Eros radar observa-
tions were also conducted at Arecibo Obser-
vatory, at 70-cm wavelength (Campbell er
al. 1976). On January 22, a ‘‘ranging’’ wave-
form was used in attempts to measure the
echo’s round-trip time delay. The single run
yielding detection of an echo was at an ep-
och (1976 Jan 22, 04'30™00° UTC, referred
to the instant of reception) close to primary
lightcurve maximum (Fig. 6).

Campbell et al. report a time delay
(150,885,295 = 5 UTC usec) measured “‘to
the weighted center of the surface scattering
function, which is closer to Earth than, but
not precisely located with respect to, the
object’s center of mass. A best guess of the
offset is that it equals the radius of Eros in
the line-of-sight at the time of the observa-
tion: about 8 km (or 50 usec in round-trip
delay). The quoted error, of course, does
not reflect this uncertainty.”

Since the subradar latitude was close to
zero, it seems reasonable to use our hull
estimate to determine that offset. The
quoted epoch corresponds to a rotation
phase of 258°, at which the hull’s center of
mass is 9.7 = 1.5 km (or 65 = 10 usec)
further from the radar than the subradar
point. Adding this offset to the measurement
reported by Campbell et al. yields an esti-
mate of the time delay corresponding to ech-
oes from Eros’ center of mass (Table III).

V. CONCLUSION

Our calculations have elucidated the non-
axisymmetric, quasi-trapezoidal shape of
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TABLE 1II

RADAR ASTROMETRIC RESULTS FOR EROS?

Date UTC Observatory Transmitter Doppler Time delay

(1975) (hh:mm:ss) frequency frequency (UTC usec)
(MHz) (Hz)

Jan 22 04:30:00 Arecibo 430 150,885,360 = 15

Jan 23 07:00:00 Goldstone 8495 670 = 15

4 Measurements correspond to echoes from the asteroid’s center of mass. Epochs are referred to the instant
of reception. For the delay entry, our hull estimate has been used to refine a measurement reported by Campbell

et al. (1976). See text.

Eros’ polar silhouette. This result helps to
explain the rotation-phase variations in the
radar echo spectra and, to a lesser extent,
the presence of odd harmonics in the optical
lightcurves. Our estimate of Eros’ mean
cross section C is a “‘weaker’” shape con-
straint than H; however, visual and thermal-
IR lightcurves are disc-integrated mappings
of precisely those average shape character-
istics conveyed by the mean cross section.

Unambiguous information about such
shape attributes as concavities, nonpolar
projections, and nonequatorial curvature
components must be sought via stellar-oc-
cultation timings, radar delay-Doppler im-
aging, and speckle interferometry. The sole
observations of a stellar occultation by Eros
(O’Leary et al. 1976) suffer from incomplete
ground-track coverage and the lack of pho-
toelectric records. On the other hand, initial
efforts to reconstruct images of Eros from
speckle interferometric visibility functions
are promising (Drummond and Hege 1989).
Their speckle image, taken at a solar phase
angle ~40° and with the sub-Earth point
~20° from the south pole, has a ‘‘peanut-
shaped’’ outline consistent with our hull es-
timate, and also reveals concavities and
brightness variations.

Unlike speckle images and occultation
profiles, a radar-derived hull has an a priori
orientation with respect to the spin vector;
it is conveniently perpendicular, so the spin
vector’s projection is a point whose location
inside the hull can be determined. Conse-

quently, we have been able to tie the 1975
radar time-delay and Doppler-frequency
measurements to Eros’ center of mass, set-
ting a precedent for small-body radar as-
trometry. The resultant pair of refined
astrometric measurements can be used to
improve the accuracy of prediction ephem-
erides for future ground-based and space-
craft studies of Eros (Yeomans ef al. 1987).

APPENDIX: PHASE SMOOTHING DETAILS,

In the phase-smoothing operation, all the
NSPEC spectra whose phases 6, fall within
a specified window are combined into a
weighted mean; the weights are w; = v;2,
where vy, is the noise level in the i'™" spectrum
(Section II). The noise level vy, in the
weighted-mean spectrum satisfies y;?2 =
Syt

Let the zero crossings in the weighted-
mean spectrum be p, and p_. These two
support-function values are associated with
rotation phases 0, and 68, + 180°, and it
might seem proper to set 6, equal to the
weighted mean (6,,) of the §,. However, we
wish to ensure that the least-squares Fourier
fit (step 2 in Section I1IB) ‘‘be aware’’ of the
phases 6, and noise levels y; of the NSPEC
parent spectra. Therefore, we let the win-
dow’s contribution to the support-function
“‘data vector”” p be NSPEC identical pairs
of zero crossings (p , , p_) whose associated
phases (8, and 6, + 180°, 6, and 6, + 180°,
.+« Oyspec and Bygpec + 180°) and noise
levels are those of the parent spectra. In
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different words, we repeat the pair (p, ,
p.) NSPEC times in p, and the pair’s i*
appearance is associated with the rotation
phase and noise level of the i parent
spectrum.

The error assigned to the i" pair can be
written g; = I'y;, where I is a proportionality
factor whose value is assumed to be con-
stant for the entire Eros data set but is not
known a priori. This is all right, because I
merely scales the data-covariance matrix M
and drops out of the least-squares calcula-
tion of k. If the errors £ are normally distrib-
uted and our estimator is unbiased, we
would expect the postfit residuals to be x?
distributed (Jenkins and Watts 1968, Appen-
dix A4.1). Under this assumption, the value
of I' satisfying

N
QL - K)T2= > [(p; — v (A

=1
with K = 2M + 1 and 2L equal to the length
of p, let us calculate the effective error in
the support-function data a posteriori. This
procedure was followed in assigning the
error bars to the support-function data in
Fig. 5.

In exploring phase-averaging approaches,
we experimented with independent win-
dows as well as overlapping windows (i.e.,
running boxes), for a variety of window
sizes. The results led us to settle on overlap-
ping windows, offset from each other by
multiples of 5°.
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