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The BRSD[ technique is also being applied by

Margot et al. to Venus using Goldstone and the GBT to

determine the interaction of the Venus surface with the
very dense atmosphere, as well as refinement of the spin

rate and pole direction.

Both the Goldstone and Arecibo radars mapped

portions of Venus prior to the Magellan mission to

determine the Venusian spin rate and pole direction,

which allowed the Magellan to enter an optimal mapping

orbit around Venus. Both radar observatories determined

these quantities from different sets of features on the
Venus surface. (See [32] and [33].) The separate

determinations agreed very well, and a combination of

all the time histories of the Venus radar features led to a
choice for the Magellan orbit that worked perfectly.

Mars also has been a frequent target of ground-based

radars. In 1971 and 1973, an intense ranging campaign of

the Mars equatorial regions led to topographic maps,

which were the standard reference for many years [34].

Since then, every Mars landing mission, including Viking,

Pathfinder, the Mars Exploration Rovers (MERs), and

Phoenix, has used the ground-based radars to help winnow
down the set of scientifically interesting landing sites by

measurement of their surface roughness (e.g., [35]–[38]).

Since Pathfinder and the MERs were dependent on a solid-

surface-sensing radar for final descent, a key contribution

of the Goldstone radar was in validating the radar

reflectivity of the various sites in addition to the roughness

determinations.

The Cassini mission to Saturn carried the European-
built Huygens probe to land on Titan, the largest moon of

Saturn. The Huygens probe descended into the thick

atmosphere of Titan, which some scientists hypothesized

was a by-product of an ocean of hydrocarbons that was

kilometers deep. Joint observations by the Goldstone radar

and the VLA determined that these fears were exaggerated,

and that continent-sized regions of ice protruded through

the ocean [39]. The Arecibo radar also observed Titan at
13 cm in 2001 and 2002, and obtained specular echoes

consistent with reflection from areas of liquid hydro-

carbons [40]. The radar on-board the Cassini spacecraft

performed flyby radar imaging of Titan. After the Huygens

Probe descent to Titan’s surface, the Cassini radar

determined that hydrocarbon (ethane mixed with meth-

ane) lakes could be found, but no very large seas, much less

a ubiquitous kilometers-deep ocean.
In 1999, the Goldstone radar played an unusual role in

support of the ESA/NASA SOHO mission, actually resulting

in helping to save the spacecraft [41]. The SOHO solar

observatory, in an L1-halo orbit near the Earth, accidentally

used a large part of its attitude control thruster fuel, which

left the spacecraft spinning at a rate that made telemetry

contact useless. Ground-based radar observations in which

Arecibo-transmitted and Goldstone-received CW radar

Fig. 11. Mercury spin rate deviations from the resonant rate of 3/2

times the mean orbital frequency. Observed data points and their error

bars are shown in black. The red line shows a numerical integration of

the Sun’s torque on Mercury, which is fitted to the data. This fit

estimates three parameters, which in effect include the 88-day forced

libration and a 12-year free libration. (Figure from [31].)

Fig. 12. The chirp ranging system increases the GSSR ranging resolution by a factor of five, from 18.75 to 3.75 m. This figure shows the significance

of a factor of five improved resolution for NEO 1998 CS1 from 75 m per row at the top to 15 m per row at the bottom.
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returns at S-band from SOHO determined the rate at which

the SOHO spacecraft was spinning. Moreover, the radar

echoes showed that the spin rate was low enough that a

fraction of the remaining thruster propellant could bring

SOHO back to rotating at a Sun-synchronous rate. As of 2010,

SOHO (which cost about a billion Euros) was still operating.

One additional use of the Goldstone radar is its
participation in a NASA program of monitoring orbital

debris around the Earth. The Goldstone radar provides

unique information on clouds of extremely small particles,

ranging from about 1–10 mm, orbiting between altitudes of

about 400–2500 km. [42]. Even particles of this small size,

moving at extremely high velocities, can pose safety

hazards to both human and robotic spacecraft. These radar

observations continue to be important to astronauts
moving on the exterior of the International Space Station.

VIII . FUTURE DIRECTIONS FOR
THE GSSR

As mentioned above, the resolution of NEO imaging at the

Goldstone radar could be improved to significantly finer

than the current 3.75-m range resolution. Even though this

is a factor of five higher than the previous best range
resolution at Goldstone (see Fig. 12 for a pictorial version

of what a factor of five can gain), this could be improved to

about 1-m range resolution with no difficulty in principle.

The fundamental limitation to the range resolution is the

bandwidth of the klystron power amplifiers through which

the Bchirp[ waveform passes. The spectrum allocation of

the Goldstone radar is from 8500 to 8620 MHz (120-MHz

Fig. 13. The locations of the VLBA telescopes, the GBT, Arecibo, Goldstone, and the VLA within the United States.

Fig. 14. The locations of radio telescopes at the Goldstone Deep Space

Communications Complex (GDSCC). North is towards the top. The scale

can be quickly understood from knowing that the baseline length

between Deep Space Station (DSS)-25 and DSS-13 is 13 km. Three

telescopes are nearly colocated at the ‘‘Apollo’’ complex: DSS-25,

DSS-24, and DSS-26. All of these radio telescopes have been used as

receivers by the GSSR.
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Fig. 15. (a) A block diagram of the GSSR hardware in the DSS-14 pedestal (immediately below the azimuth bearing), the so-called MOD III

area above the pedestal and below the elevation tracks. The colors are assigned as in Fig. 2. The area to the upper left shows telescopes

elsewhere in the Goldstone complex. Acronyms: FOT ¼ fiber optic transmitter; FOR ¼ fiber optic receiver; BVR ¼ block V Receiver

(DSN hardware); DRCV ¼ digital receiver (not shown is DRCV disk storage array); BPF ¼ band pass filter; PFS ¼ portable fast sampler;

TCT ¼ time code translator. (b) Continues from Fig. 15(a) as indicated there.
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bandwidth). The range resolution of the Goldstone radar
could be improved most simply by procuring power

amplifiers that would safely pass a broader bandwidth

chirp than the 40-MHz bandwidth amplifiers currently in

use. If power amplifiers could be obtained with 150-MHz

of usable bandwidth, then 1-m range resolution could be

achieved. However, to achieve 1-m resolution in cross

range (Doppler shift), longer coherent integration times

would be required. Only then could images with (1 m)2

pixel sizes be made.

Delay-Doppler radar NEO images with 3.75-m range

resolution will lead to dramatic improvement in our

knowledge of NEO sizes, shapes, and detailed surface

structure. Finer details for NEO surfaces will facilitate

much improved insight into NEO geology and collisional

evolution. The detection of asteroid satellites will be

significantly enhanced by the increase in resolution. For
many NEOs, the higher resolution will permit much finer

fractional precision Goldstone radar ranging astrometry

than was previously possible, which will improve long-term

orbital prediction for such objects.

IX. CONCLUSION

From the planet closest to the Sun to the icy moons of
Jupiter and beyond to Saturn’s rings and Titan, the

Goldstone radar has performed extraordinarily valuable

science and contributed to nearly every NASA solar system

flight project, and is expected to continue doing so. The

NASA investment in this radar observatory has resulted in

significant enhancements (and frequently success-critical

observations) for NASA’s Flight Projects program, and has

greatly benefited NASA’s science investigations. h

APPENDIX I
RADIO TELESCOPES IN THE UNITED
STATES USED WITH THE GSSR

The telescopes to which the GSSR transmits (some

shown in Fig. 13) must have extremely accurate frequency

standards such as a cesium or a hydrogen maser Bclock.[

Commercial cesium clocks have been available since the
1950s. Such Bclocks[ are essential for multistation radar

astronomy. Synchronization to universal time Bcoordinated[
(UTC) has been greatly simplified by the global positioning

system (GPS), which can provide very accurate timing

signals with accuracy of about 50 ns for observatories around

the world. The Goldstone complex (Fig. 14) has frequency

and timing signals distributed to all telescopes by buried fiber

optical cable at sufficient depth to avoid daily heating effects
changing the fiber propagation speed. See [43] for the factors

that permit the Goldstone telescopes to operate as a very

large connected-element interferometer.

APPENDIX II
DETAILED BLOCK DIAGRAMS FOR
THE GSSR

A more complete explanation of the conceptual diagram

of Fig. 2 is shown in Fig. 15. The ‘‘programmable oscillators’’

or POs of Figure 2 are further explained below. The PO is a

frequency generator whose output signal is controlled by a

Bnumerically controlled oscillator[ (NCO). The NCO is, in
turn, driven by an embedded computer, which changes the

output frequency as given by reading an ephemeris file

appropriate to the observation. The next generation PO

(currently being integrated into the system) is a mixed-signal

multilayer printed circuit board (PCB) which uses a field-

programmable gate array (FPGA) in place of the embedded

computer. The ephemeris information is loaded into the

FPGA through a dynamic reconfiguration port. This port
gives the ability to reconfigure only that portion of the FPGA

that holds the polynomials for the ephemeris calculation,

while leaving unchanged the portion of the device that

implements the main PO function of calculating the

frequency as a function of time.
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