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Abstract

We report Arecibo (2380-MHz, 13-cm) observations of Asteroid 1580 Betulia in May—June 2002. We combine these continuous-wave Doppler
spectra and delay-Doppler images with optical lightcurves from the 1976 and 1989 apparitions in order to estimate Betulia’s shape and spin
vector. We confirm the spin vector solution of Kaasalainen et al. [Kaasalainen, M., and 21 colleagues, 2004. Icarus 167, 178—196], with sidereal
period P = 6.13836 h and ecliptic pole direction (A, 8) = (136°, +22°), and obtain a model that resembles the Kaasalainen et al. convex-definite
shape reconstruction but is dominated by a prominent concavity in the southern hemisphere. We find that Betulia has a maximum breadth of
6.59 £ 0.66 km and an effective diameter of 5.39 4= 0.54 km. These dimensions are in accord with reanalyzed polarimetric and radar data from
the 1970s. Our effective diameter is 15% larger than the best radiometric estimate of Harris et al. [Harris, A.W., Mueller, M., Delbd, M., Bus, S.J.,
2005. Icarus 179, 95-108], but this difference is much smaller than the size differences between past models. Considering orbits of test particles
around Betulia, we find that this asteroid’s unusual shape results in six equilibrium points close to its equatorial plane rather than the usual four
points; two of these six points represent stable synchronous orbits while four are unstable. Betulia’s close planetary encounters can be predicted

for over four thousand years into the future.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Asteroid 1580 Betulia was discovered on May 22, 1950, by
E.L. Johnson at the Union Observatory in Johannesburg, South
Africa. Betulia is an Earth-crossing Amor asteroid (Shoemaker
et al., 1979) and was only the fourteenth near-Earth asteroid
(NEA) to be found. Its unusually high orbital inclination of 52°,
along with its status as a C-class (carbonaceous) object, led to
speculation that it is an extinct comet nucleus (e.g., Drummond
and Wisniewski, 1990). But its most unusual feature is its triple-
peaked lightcurve. Tedesco et al. (1978) used data from the
favorable 1976 opposition to show that at large solar phase
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angles Betulia exhibits three pairs of brightness extrema per ro-
tation, whereas almost all other asteroids have double-peaked
lightcurves and a few (such as 4 Vesta) have single-peaked
lightcurves produced by albedo variegation.

Although Tedesco et al. considered the possibility of albedo
spots, they were able to explain their data qualitatively by
means of shape alone. Their model resembles what one would
get by starting with a prolate spheroid (with elongation 1.21)
that spins about its shortest (z) axis, and then removing an en-
tire quadrant in the xy plane.

Kaasalainen et al. (2004) took a different approach to es-
timating Betulia’s shape: they inverted lightcurve data from
1976 and 1989 to estimate the spin vector while simultane-
ously generating a convex-definite shape model, similar to what
one would obtain by “gift-wrapping” the actual asteroid. Their


http://www.elsevier.com/locate/icarus
mailto:magri@maine.edu
http://dx.doi.org/10.1016/j.icarus.2006.08.004

Radar observations of Betulia 153

spin vector has sidereal period P = 6.13836 h and pole di-
rection (A, 8) = (136°,422°) with an error radius of 5-10°.
Their shape model has axis ratios a/b = 1.1 and b/c = 1.4,
and is “very peculiar with a large planar area on one side.”
Kaasalainen and Torppa (2001) point out that the locations of
concavities in an asteroid are revealed as large planar sections
in the best-fit convex-definite model; hence Kaasalainen et al.
(2004) note that the flat side of their Betulia model may repre-
sent a “considerable” concavity.

A separate issue is the absolute size of Betulia. Tedesco et
al. used polarimetric data to derive the visual albedo and hence
the mean diameter, obtaining values of 6.3 and 7 km for two
possible laws relating polarimetric slope to albedo. Pettengill et
al. (1979) used continuous-wave (CW) radar spectra from the
1976 apparition to obtain a zero-crossing Doppler bandwidth
of 26.5 &+ 1.5 Hz, which could be combined with the known
rotation period to show that a lower bound on Betulia’s maxi-
mum breadth is 5.8 + 0.4 km. Lebofsky et al. (1978) combined
visual photometry, 10.6-um radiometry, and the standard ther-
mal model to derive a mean diameter of 4.20 &£ 0.20 km and
geometric visual albedo p, = 0.108 &= 0.012. Since this diame-
ter conflicts with the polarimetric and radar results, Lebofsky et
al. also considered a thermal model that assumes high thermal
inertia (i.e., bare bedrock or large rocks rather than fine-grained
regolith) and hence significant infrared radiation from the night
side; this model yielded a diameter of 7.48 &+ 0.34 km and an
albedo of 0.034 & 0.004. This diameter estimate is in accord
with the polarimetric and radar values.

More recently, this agreement has been called into question
by Harris et al. (2005), who observed Betulia at five thermal
infrared wavelengths in 2002. Harris et al. analyzed these data
using the NEA thermal model (NEATM), which, unlike the two
simple models considered by Lebofsky et al. (1978), treats the
infrared “beaming parameter” n as an adjustable parameter, ef-
fectively adjusting the temperature distribution across the mod-
el’s surface so as to be consistent with the asteroid’s observed
color temperature. This procedure resulted in an effective diam-
eter estimate of 3.8 £ 0.6 km, significantly smaller than values
obtained in earlier studies, and a visual albedo of 0.11 £ 0.04.
Harris et al. explored this discrepancy by carrying out a sec-
ond analysis, this time combining a detailed thermophysical
model with the Kaasalainen et al. (2004) convex-definite shape
model. The resulting effective diameter and visual albedo are
4.57 £ 0.46 km and 0.077 £ 0.015, respectively; this diameter
is larger than the NEATM-based estimate but still smaller than
earlier estimates. Both the Lebofsky et al. and Harris et al. p,
estimates are plausible for C-class asteroids, so we cannot use
this criterion to choose between models.

Betulia’s most recent favorable opposition was in 2002,
when it approached to within 0.238 AU of Earth, and we took
this opportunity to observe it once again with radar, this time
obtaining both CW spectra and delay-Doppler images. As dis-
cussed by Ostro et al. (2002), radar data can be used to constrain
the target’s orbit, size, shape, and spin vector, its near-surface
roughness at decimeter scales (due to surface rocks, buried
rocks, and subsurface voids), and its near-surface bulk density,
which can tell us about mineralogy (e.g., metal content—see

Ostro et al., 1991a) or about near-surface porosity (Magri et
al., 2001). Most importantly for Betulia, concavities leave a
strong signature in delay-Doppler images. The primary goals
of our radar experiment were to reconstruct Betulia’s shape—
including any possible concavities—and to determine its ab-
solute size.

The next section describes our observations. Section 3 dis-
cusses in some detail how we use our modeling software to
reconstruct the shape of a radar target. Section 4 presents the
resulting shape model, and Section 5 considers the implications
of our improved radar astrometry. Section 6 characterizes Be-
tulia’s gravitational environment, discussing the possible orbits
in its vicinity. Finally Section 7 summarizes our results. Ap-
pendix A contains detailed information on the delay-Doppler
impulse response function and on delay-Doppler image calibra-
tion, Appendix B fully describes the penalty functions used by
our modeling software, and Appendix C lists Betulia’s gravity
coefficients.

2. Observations and data reduction
2.1. Delay-Doppler images

2.1.1. Observing scheme

The delay-Doppler images discussed here were obtained
in May—June 2002 (see Table 1) at the Arecibo Observa-
tory. For each observation (or “run”) we transmitted a cir-
cularly polarized monochromatic signal at about 2380 MHz.
In order to compensate for the Doppler shift due to rela-
tive motion between the telescope and the target’s center of
mass (COM), we generated ephemeris predictions of the COM
Doppler shift, and continuously adjusted the transmission fre-
quency so that hypothetical echoes from the COM would return
at 2380.000005 MHz if our ephemeris were exactly correct.
(The extra 5 Hz “transmit offset” serves to make the direction of
positive Doppler clear in case of error in the instrumental setup
or in the data analysis.) We used the early observations in the
experiment to refine the orbit and then generated a new predic-
tion ephemeris, so that we avoided delay and Doppler smearing
produced by uncompensated changes in the COM delay and
Doppler shift over a run’s duration.

The transmitted signal was phase-modulated via a pseudo-
random binary code, each element (bit) of which is an instruc-
tion either to invert or not to invert the transmitted sinusoid for
a duration of b (for “baud length”) seconds. After L elements
the code repeats itself; thus the code repetition time is p = Lb.
Such repeating “maximum-length codes” are designed to have
a very low value for the autocorrelation function (= —1/L) for
any lag other than zero, a property that was important when we
decoded the echoes to produce images (see below).

We transmitted this modulated signal for a duration almost
equal to the round-trip time (RTT) to the target, then switched to
receive mode for an equal duration, measuring the echo signal
in both the same circular polarization as was transmitted (SC)
and the opposite circular polarization (OC). Echoes in each po-
larization were received as analog voltage signals, amplified,
mixed down to baseband, and convolved with a rectangular fil-



Table 1

Observations

2002 observing date Type Runs Receive start-end RA Dec Dist. ) Rot. phase Orbital Code Baud spb Af Power

(UT) (UT) ) ) (AU) ) ) solution (us) (Hz) (kW)

May 28-29 Ranging 1 23:53:49-23:57:39 197 +23 0.238 —44 120-123 32 8191 4.0 1 0.954 560
Ranging 1 00:02:47-00:06:37 197 +23 0.238 —44 128-132 32 8191 4.5 1 0.848 560
CwW 5 00:13:00-00:48:38 197 +22 0.238 —44 137-171 32 - - - 1.000 547
Delay-Doppler 10 00:53:56-02:10:10 197 +22 0.238 —44 179-253 32 8191 0.5 1 0.954 548
Delay-Doppler 2 02:15:50-02:27:36 197 +22 0.238 —44 259-271 32 4095 1.0 2 0.954 545

May 29-30 CwW 1 23:41:35-23:45:25 196 +19 0.238 —43 79-83 34 - - - 1.000 834
Delay-Doppler 11 23:53:33-01:28:15 196 +19 0.238 —43 91-183 34 2047 2.0 2 0.954 839
Delay-Doppler 6 01:32:21-02:19:30 196 +19 0.238 —43 191-231 34 2047 2.0 2 0.954 450

May 31-Jun. 1 CwW 1 23:47:10-23:51:00 193 +11 0.241 —41 30-33 34 - - - 1.000 825
Delay-Doppler 15 23:58:39-01:55:01 193 +11 0.241 —41 41-155 34 2047 2.0 2 0.954 817

Jun. 1-2 CwW 1 23:30:29-23:32:39 192 +7 0.245 -39 346-348 34 - - - 1.000 823

Jun. 2-3 Delay-Doppler 9 23:34:10-00:44:34 191 +4 0.249 —38 321-30 34 2047 2.0 2 0.954 605

Notes. All experiments involved transmission at 2380 MHz and reception in both OC and SC polarizations. On each line we give the observing date; the type of observation; the number of transmit-receive cycles,
or runs; the starting and ending receive times; right ascension, declination, and distance from Earth; subradar latitude § at mid-receive; the range of rotation phase covered (with zero phase occurring at UT 2002 Jun.

03 00:11:53); the orbital solution used for our delay-Doppler ephemeris predictions; the length of the repeating binary phase code; the baud length and the number of samples per baud; the raw frequency resolution
Af of our reduced data; and the transmitted power. Plane-of-sky motion was taken into account when computing rotation phase.
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ter matched to the baud length. We then took digital samples of
the complex voltage every w seconds. Typically b is an integer
multiple of w; denoting this integer as s, we refer to this pro-
cedure as taking s samples per baud. (The advantage of using
s > 1 is discussed at the end of Appendix A.) Finally we wrote
these samples to disk for later processing.

2.1.2. Data reduction

The echoes had to be decoded in delay, since each data sam-
ple represents contributions from multiple delay lags: power
that was transmitted earlier and then scattered off relatively
distant parts of the target as well as power that was transmit-
ted later and then scattered from relatively nearby parts of the
target. We accomplished this by cross-correlating our time se-
ries of voltages with a copy of the binary phase code. In other
words, we decoded a particular delay lag by multiplying the re-
ceived time series by a suitably lagged copy of the code and
then taking the mean value of this product. The fact that the
code’s autocorrelation function is nearly zero for nonzero lag
ensured that the contributions from the “wrong” lags summed
to nearly zero.

[Since the code is periodic, we actually carried out the cross-
correlation in the frequency domain in order to speed up the
computation. First we created a copy of the code in which each
code element is repeated s consecutive times, and then we com-
puted C*, the complex conjugate of the fast Fourier transform
(FFT) of this copy. Next we obtained D, the FFT of the data;
this had to be done in pieces, since there were too many sam-
ples per run to transform all of them at once. For each piece
we first subtracted the mean complex voltage from the data in
order to minimize any constant offsets from the digitization,
then performed an FFT to obtain D. These FFT computations
were sped up by means of the overlap-save sectioning method
(e.g., Brigham, 1988). Finally we took the product C*D and
performed an inverse FFT to go back to the time domain.]

The maximum number of lags that can be decoded is Ls, the
number of voltage samples per code repetition time. We typi-
cally decode all possible lags, but it is possible to decode only a
subset within each baud length—say, every other lag for s = 4.
We denote the number of decoded lags (image rows) per baud
as x.

Thus we obtained a decoded voltage time series for each of
N image rows, where N = L. The delay resolution is Ad =
b/ x, so the unaliased delay range covered is NAd = Lb = p.
For each row we now performed an n-point FFT to get a
Doppler spectrum whose width is the unaliased bandwidth B =
1/p and whose frequency resolution is Af = B/n = 1/(np),
and then took the complex square to obtain power. Any power at
frequencies outside the range [—B/2, B /2] is aliased to a differ-
ent Doppler frequency (image column) within that range. This
procedure was carried out for blocks of n N decoded samples at
a time (covering np of observing time), each block yielding an
n x N image that represented one “look,” a single estimate of
the echo’s delay-Doppler power distribution.

This delay-Doppler image is quite different from an optical
image of the target, and not merely in the observing wavelength.
Both dimensions of an optical image are angular dimensions

that are directly proportional to spatial dimensions. For a radar
image, the delay dimension is directly proportional to a spatial
dimension (distance from Earth) but the Doppler dimension is
directly proportional to radial velocity, which depends not only
on the spatial position of a given scattering element but also on
the target’s spin vector. Furthermore, at a given moment two or
more noncontiguous scattering elements on the target’s surface
can share the same delay and Doppler values: the mapping from
the plane of the sky to a delay-Doppler image is generally a
many-to-one mapping (see Fig. 1 of Ostro et al., 2002).

If 7 is the integration time (~RTT) for the run then the
number of looks is Njgoks = 7/(np) = Tt Af. We incoherently
summed these independent estimates, thus reducing the frac-
tional noise fluctuation by a factor of y/Njgoks. Finally we com-
puted the mean noise power and r.m.s. noise fluctuation within
a signal-free subset of the image, subtracted the mean from the
image, and divided the result by the r.m.s. fluctuation, thus ob-
taining a normalized image with zero mean and unit r.m.s. noise
fluctuation.

Since the code is periodic, any signal that is earlier than the
first delay lag or later than the last one is “wrapped around”
(aliased) to a different lag. In order to avoid delay aliasing,
the target’s delay depth must be less than the unaliased de-
lay range p; in order to avoid Doppler aliasing, the target’s
bandwidth (due to rotation) must be less than the unaliased
bandwidth B = 1/p. There is no way to satisfy both of these
requirements simultaneously unless the product of the target’s
delay depth and bandwidth is less than unity: the “spreading
criterion” (Green, 1968, p. 34). This criterion is easily satisfied
for NEAs such as Betulia; overspreading can be a problem for
larger main-belt asteroids and (especially) for planets. Differ-
ent observing schemes must be employed for overspread tar-
gets, such as the “coded long pulse” (or “long code”) technique
(Sulzer, 1986, 1989; see also Harmon, 2002) in which a nonre-
peating binary phase code and a modified reduction algorithm
are used in order to spread the delay-aliased signal at each lag
across the full unaliased Doppler bandwidth.

2.1.3. Initial observations

Even an NEA, however, has the problem that until its or-
bit has been precisely constrained, the delay might be off by
some integer multiple of the unaliased delay depth p without
our knowing it. For example, a signal that appears to be at ex-
actly the predicted delay might in fact be an integer multiple
of p earlier or later. We dealt with this delay aliasing problem at
the start of the experiment by taking two low-resolution “rang-
ing” images using the same code length but slightly different
baud lengths, 4.0 and 4.5 ps. For example, a target that is ex-
actly two codes further away (2p later in delay) than predicted
at 4.0 ps will be only 1.78 codes further away than predicted at
4.5 ps, so the latter signal will appear to have shifted closer to
us by 22% of the image depth (0.22p). We used this informa-
tion to update our ephemeris before performing high-resolution
observations.

Our high-resolution runs on the first observing date, with
baud lengths of 0.5 and 1 ps, turned out to be too weak to be
very useful, so for the remainder of the experiment we used
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a 2-ps baud (with s = 2) and a 2047-length code; it is these
41 images (reduced with x = 2) which we have used to model
Betulia’s shape.

2.2. Doppler spectra

We also obtained eight continuous-wave (CW) Doppler
spectra on four dates (see Table 1). The observing procedure
was somewhat similar to that used for imaging, except that
there was no phase modulation (and hence no delay information
and no decoding to perform), the transmit offset was 200 Hz
(to move the signal well away from the strong spike at 0 Hz
caused by constant offsets in the system), the COM Doppler
shift was compensated for by continuously adjusting the receive
frequency rather than the transmit frequency, and the sampling
rate was 5000 Hz (yielding B = 5000 Hz). A linear baseline
was subtracted from each power spectrum during the process
of normalizing it to zero mean and unit r.m.s. noise fluctuation.

3. Shape modeling

We combined 41 delay-Doppler images and eight CW spec-
tra with 25 lightcurves taken from the Asteroid Photometric
Catalogue (Lagerkvist et al., 2001) in order to model Betulia’s
shape, size, spin state, and radar reflectivity. Our modeling pro-
cedure is the same one used in all recently published radar-
based asteroid shape reconstructions, so we describe it here in
some detail.

3.1. Ellipsoid model

3.1.1. Model parameters

In reconstructing Betulia’s shape we started with a triax-
ial ellipsoid model whose long, intermediate, and short axis
lengths are 2a, 2b, and 2c, respectively. We assumed principal-
axis rotation, with the spin vector parallel to the short axis. We
initialized the rotation period, pole longitude, and pole latitude
to the Kaasalainen et al. (2004) values; for some modeling runs
we held all three of these parameters fixed, while for others
we treated one or more of them as free parameters. Since our
observing ephemeris was not perfect, we fit the correction in
delay as a second-order polynomial in time. This polynomial
also provided us with the (linear) Doppler correction polyno-
mial as a function of time, since Doppler is proportional to the
negative of the time derivative of delay.

We assumed a two-parameter radar scattering law, do/d A =
pcos™ O, where o is radar cross section, A is physical surface
area, and 0 is the angle of incidence. In fitting lightcurves, we
assumed the optical hybrid scattering law used by Kaasalainen
et al. (2001), a weighted sum of Lommel-Seeliger and Lambert
contributions. In our ellipsoid modeling, the free parameters
were the three axis lengths, the rotation phase at an arbitrary
reference epoch, the radar reflectivity p, the weighting factor
in the optical scattering law (which controls the degree of limb
darkening), the three delay correction polynomial coefficients,
and (for some modeling runs) the rotation period, pole longi-
tude, and pole latitude. The radar scattering law exponent n

was held fixed during each modeling run, although we varied
it in a multirun grid search in order to place constraints on its
value. We were not interested in modeling Betulia’s absolute
optical brightness, so we treated all lightcurve data as relative
photometry; Kaasalainen and Torppa (2001) claim that this can
be a good idea even when absolute photometry is available, as
it leads to a cleaner split between the shape/spin solution and
the optical scattering law solution.

3.1.2. Modeling algorithm

Our constrained-least-squares shape-modeling program,
SHAPE, cycled through the 9-12 free parameters, searching
at each step for the best-fit value of one of these parameters
while holding all of the others constant (Hudson, 1993). By
“best-fit” we mean that the objective function, the sum of re-
duced chi-square and one or more penalty functions, is at a
local minimum. The only penalty function used at the ellip-
soid stage of the fit was the “nonpa_uni” penalty, designed to
discourage nonprincipal-axis (NPA) models by returning large
values when the third axis length 2¢ was not the shortest axis
length. (The various penalty functions used by SHAPE are fully
described in Appendix B.) The penalty function was multiplied
by a user-chosen weighting factor; larger penalty weights meant
that the corresponding model property (here NPA rotation) was
more strongly discouraged. In this way penalty functions en-
sured that our model would not possess unusual or implausible
physical properties unless the data truly required such proper-
ties; since principal-axis rotation is simpler than NPA rotation,
our conservative approach was to apply Occam’s razor by try-
ing to find a viable principal-axis model before resorting to
NPA models.

For each free parameter in the cycle, SHAPE computed
the objective function for the unchanged parameter value, then
added a user-specified increment step to the parameter and
computed the new objective function. Based on what it found
in comparing the two function values, the program then ap-
plied ever-larger steps in the “downhill” direction until finally
the objective function started to rise again, at which point we
knew that we had reached a local minimum; that is, we “brack-
eted” the minimum (Press et al., 1992, Section 10.1). Next
SHAPE homed in on that minimum; if more than one local
minimum was present within the bracketed parameter inter-
val, there was no guarantee that we would find the best one.
Here we used a modified version of Brent’s algorithm (Press
et al., 1992, Section 10.2) that allowed us to specify both an
absolute tolerance abstol and a fractional tolerance fractol.
The best-fit parameter value x which we finally obtained was
within =£(fractol|x| + abstol) of the parameter value xpi, that
would truly have minimized the objective function. Different
increments, fractional tolerances, and absolute tolerances were
used for different parameters; for example, we generally used
nonzero abstol for angles (e.g., rotation phase at the reference
epoch) and nonzero fractol for other parameters.

If step was too small, the algorithm could get stuck in shal-
low local minima without ever “noticing” better minima that
are not too far away in parameter space; if it were too large,
we could step too far and jump from a good local minimum to a
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shallower one some distance away. Small fractol and abstol val-
ues were good but resulted in slower fits. Experimentation and
subjective judgment were needed to arrive at sensible values.

Each time SHAPE evaluated the objective function for a
trial value of the parameter being adjusted at the moment, it
“realized” the current ellipsoid model as a 2586-vertex polyhe-
dral solid (with triangular facets) that approximated the ellip-
soid. Next, for each CW spectrum, delay-Doppler image, and
lightcurve point to be modeled, the model’s angular orientation
(i.e., rotation phase), position and motion in the plane of the
sky, delay correction, and Doppler correction were determined
for that observation epoch. For each epoch, the program created
a model plane-of-sky (POS) frame—a simulated diffraction-
free optical image of the model as viewed from Earth at that
epoch—that was 9 km on a side with 101 pixels per side. We
stress that this simulated POS image inhabited a completely dif-
ferent two-dimensional space (north—south, east-west) than a
radar image (delay, Doppler) and was merely an intermediate
step along the way to generating simulated radar images and
spectra and simulated lightcurve data. SHAPE checked each
pixel in the POS frame to determine which triangular model
facet was projected onto its center as viewed from Earth, and
assigned relevant quantities to the pixel based on that deter-
mination: distance, scattering angle, and (for lightcurve points)
incidence angle and shadowing status. A Doppler value was as-
signed based on the pixel’s perpendicular distance in the plane
of the sky from the projected rotation axis.

(SHAPE assigned incidence and scattering angles to each
POS pixel in a way that effectively smoothed the polyhedral
model. First, for each vertex in the model it computed a unit
“vertex normal” by summing the unit normals to each facet that
had that vertex as one of its corners, then normalizing the sum
to unit length. Next, for each POS pixel, SHAPE determined
which model facet was projected onto the POS pixel center and
constructed a linear combination of the vertex normals for the
three vertices of that facet, with more weight in this combina-
tion given to a vertex that projected closer to the POS pixel
center. The program then computed the incidence and scatter-
ing angles relative to the direction of that linear combination.)

The program now used all of these quantities to compute
each POS pixel’s contribution to the simulated data at that
epoch. Obtaining the magnitude for each simulated lightcurve
point simply involved taking the logarithm of the sum of the
POS pixel values. For CW spectra and (especially) delay-
Doppler images, the mapping from the plane of the sky to the
simulated data is more complicated, and is described in Appen-
dix A.

Finally SHAPE compared the simulated data to the actual
data to obtain chi-square. For lightcurve points, chi-square was
computed in magnitude space rather than in intensity space.
(As a result, the quantity that we call “chi-square” is not liter-
ally chi-square distributed.) We chose to treat lightcurve data as
relative photometry: before computing chi-square for a given
lightcurve, the program shifted the simulated magnitudes so
that their variance-weighted mean was equal to the variance-
weighted mean of the actual magnitudes. Such a shift mini-
mizes chi-square. For a few modeling runs we also treated radar

data as relative photometry, in which case the program min-
imized chi-square by applying the appropriate multiplicative
constant to the cross section values in each simulated image
or spectrum. For each image, SHAPE computed this constant
by first normalizing each pixel to unit variance and then divid-
ing the sum over pixels of (simulated pixel) (actual pixel) by the
sum over pixels of (simulated pixel)?; an analogous expression
was used for each spectrum. This approach prevents us from es-
timating radar reflectivity p, so for our final model we treated
radar data as absolute photometry—that is, we did not allow
the program to improve chi-square by rescaling the simulated
images and spectra.

Each delay-Doppler image, CW spectrum, and lightcurve
had its own user-specified weighting factor that multiplied its
contribution to chi-square (and its degrees of freedom); these
weights could be adjusted at the start of a modeling run so as
to force the program to pay more attention to certain data than
to others. Once chi-square was computed and was divided by
the total number of degrees of freedom to obtain reduced chi-
square, the values of the various penalty functions (multiplied
by the various penalty weights) were added to yield the objec-
tive function.

3.2. Harmonic model

Once we obtained the best-fit ellipsoid, we converted it to a
model whose surface displacement was described by a spheri-
cal harmonic series with a maximum degree of 8. Just as with
the ellipsoid fit, the harmonic model was realized as a polyhe-
dral solid before model predictions were generated, although
to save computing time we used only 1148 vertices rather than
2586. One difference with respect to the ellipsoid model was
that the spherical harmonic series had (8 + 1)? = 81 coeffi-
cients to be fit rather than just three axis lengths. The other
difference is that we used three additional penalty functions.
One, “inertiadev_uni,” kept the model’s principal axes close to
the body-fixed Cartesian axes (which were simply the ellip-
soid’s symmetry axes); another, “comdev,” kept the center of
mass close to the origin (which was the center of the ellipsoid),
thus discouraging nonuniform density. The third, “concavity,”
yielded large values for nonconvex models; we applied this
penalty with an especially high weight in order to discourage
concavities very strongly.

Kaasalainen and Torppa (2001) and Kaasalainen et al.
(2001) have shown that so long as lightcurve data provide
adequate orientational coverage, and so long as any albedo
markings are not very extensive (e.g., a single albedo spot)
and not very bright, convex-definite models based on optical
photometry are robust and unique: the fit reliably converges
to the 3-D convex hull of the asteroid’s actual shape. (Strictly
speaking it converges to the “photometric convex hull,” a ver-
sion of the convex hull that has been “trimmed” such that its
shadowing properties best mimic those of the actual nonconvex
body.) By using a high concavity penalty weight at this stage of
the fit we hoped to obtain some of this stability for our quasi-
convex-definite harmonic model and to compare the result to
the Betulia model presented by Kaasalainen et al. (2004). The
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correspondence between the two methods is rough rather than
precise: our software fits the target’s surface displacement as
a sum of spherical harmonic terms, whereas Kaasalainen and
Torppa (2001) fit the target’s Gaussian curvature as exp(a sum
of spherical harmonic terms).

3.3. Vertex model

Finally we took the best-fit harmonic model and converted
it to a polyhedral model with 1148 vertices and 2292 triangu-
lar facets (=2 x 1148 — 4), thus entering the “vertex” stage of
the fit. Each vertex was assigned a base displacement that lay
on the surface of the best-fit ellipsoid to the harmonic model,
and as the fit proceeded the vertex was allowed to move along
the direction normal to that ellipsoid. SHAPE sought the vertex
deviation from the base displacement (positive to move the ver-
tex outward, negative to move it inward) that minimized the
objective function. Since the model’s shape was now deter-
mined by the values of not 3 or 81 but 1148 free parameters,
this final stage of the fit took up the bulk of the computing
time. We employed one additional penalty function at this stage,
“nonsmooth,” to discourage small-scale topographical rough-
ness (whether concave or convex). We also lowered the concav-
ity penalty weight so that the software could add any necessary
concavities to fit the data; as will be described later, Betulia has
a prominent concavity that is so obvious in our delay-Doppler
images that even the high concavity penalty weight used during
the harmonic fit could not entirely suppress it.

3.4. General modeling considerations

The modeling procedure outlined above required much sub-
jective input. We had to choose the initial values of the free
parameters in our ellipsoid model; since the evolution of our
model (i.e., its path through rn-dimensional parameter space)
depended on our starting point, we tried numerous runs with
different starting points, and also considered the effects of dif-
ferent step increments. The penalty weights, and any changes in
these weights as the fit proceeded, needed to be chosen based
on trial and error. For example, if we subjectively determined
that a finished model was too spiky to be realistic, we raised
the nonsmooth penalty weight for the next modeling run; or if
we visually compared our delay-Doppler images with the sim-
ulated images and decided that some feature appearing on a
particular observing date was important and was not being fit
closely enough, we tried other starting points or perhaps low-
ered some penalty weight(s). The maximum harmonic degree
for the harmonic fit, and the number of vertices in the final poly-
hedral model, had to be chosen as a tradeoff between model
detail and computer run time. (Naturally we also had to con-
sider how much detail could be realistically constrained by our
data.) Finally, we had the freedom to set the relative weights
of the various images, spectra, and lightcurves for the purpose
of calculating chi-square. One method of dealing with a hard-
to-fit delay-Doppler feature was to increase the weights of the
images in which it appears—perhaps by a factor of 2 or even
200. At the very least, we needed to choose the relative weights

of images vs spectra vs lightcurves. We tried to give lightcurves
enough weight that they would influence the model (i.e., pre-
vent it from going astray), but not so much that they would
dominate the radar data; we wanted spectra to be influential
enough to constrain Betulia’s instantaneous zero-crossing band-
width (and hence its maximum breadth and its elongation). In
all we tried to err on the side of investigating too many possi-
bilities rather than too few, so that we can be confident in the
model we have finally adopted.

4. Modeling results

Fig. 1 shows 41 delay-Doppler images alongside the cor-
responding “fit” images synthesized from our model and the
plane-of-sky views of the model. (The plane-of-sky views are
the simulated optical “POS frames” discussed in Section 3.1.2.)
The eight CW spectra and superimposed fit spectra are shown in
Fig. 2. Only OC images and spectra are displayed in these two
figures, since only this polarization sense was used for mod-
eling. The 25 lightcurves and superimposed fits are displayed
in Fig. 3. The model’s properties are summarized in Table 2.
The upper panel of Fig. 4 shows six smoothed renderings of
the model as viewed along its three principal axes; regions of
the surface that were never viewed by the radar, or that were
only viewed at scattering angles greater than 60° (thereby pro-
ducing relatively weak echoes), are shaded yellow. The lower
panel of Fig. 4 shows the model as viewed from the same six
directions, but these renderings are unsmoothed and are color-
coded for gravitational slope (the angle that a plumb line would
make with the local normal to the surface) under the assumption
of uniform density and taking into consideration the asteroid’s
rotation.

4.1. Shape

In the preceding section we described an intermediate “har-
monic” stage of the modeling process in which we used a
spherical harmonic expansion to represent Betulia’s surface dis-
placement and used the “concavity” penalty function to force
the model to be quasi-convex-definite. Our goal was to compare
this intermediate result (not shown) with the convex-definite
lightcurve-based model of Kaasalainen et al. (2004), and in-
deed our model at this stage was remarkably similar to the two
views shown in Fig. 26 of Kaasalainen et al. (Those two views
are close to the “—x” and “+4y” principal-axis views of our
model in Fig. 4.) Yet even at this stage, despite being heav-
ily penalized, a concavity was developing in Betulia’s southern
hemisphere in response to our delay-Doppler images. The most
obvious signature of this concavity is the “tilde” shape of the
echo’s leading edge in the first several images on May 29-30
(Fig. 1a): a convex-definite target would instead have produced
a concave-downward leading edge.

The final “vertex” stage of the modeling enabled concavi-
ties to develop in order to fit the delay-Doppler data. Indeed,
the most prominent feature of our final model is the large con-
cavity in Betulia’s southern hemisphere, best seen in the “—y”
view in Fig. 4. The plane-of-sky views in Fig. 1a confirm that
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a) May 29-30

b) May 31 - Jun 1

Fig. 1. Betulia delay-Doppler images and model from (a) May 29-30, (b) May 31-Jun. 1, and (c) Jun. 2-3. Each OC image used as input for shape modeling is
displayed, with the corresponding synthetic image from the model fit shown to its right, and the corresponding plane-of-sky (POS) rendering of the shape model
shown to the right of the synthetic image. In the actual and synthetic delay-Doppler images, Earth is toward the top and positive Doppler is to the right. Each pixel
is 0.954 Hz x 1.0 ps, corresponding to 0.28 km x 0.15 km at our mean subradar latitude of —41°; each image spans 47.7 Hz x 60.0 ps, corresponding to 14.0 km
% 9.0 km. In the POS frames, north is up and east is to the left. Each POS frame is 9.0 km on a side, and each pixel is 0.09 km on a side. The sidereal spin vector is
denoted by a magenta arrow, and the positive ends of the long and intermediate principal axes are denoted by red and green shafts, respectively. POS renderings use
the best-fit radar scattering law, with angular exponent n = 3 (see Table 2); note the pronounced limb darkening. In each panel time increases from top to bottom

and then from left to right.

the tilde-shaped leading edge results from looking directly into
this concavity. Additionally, we see in the first few images on
May 31-Jun 1 (Fig. 1b) that when this concavity is at the tar-
get’s limb and approaching us, we get a strong glint in the
lower right portion of the image: sections of the concavity’s

wall that lie well behind the subradar point are directly facing
the radar.

We were fortunate to obtain one of our CW spectra just be-
fore the first delay-Doppler image on May 29-30, so that we
can investigate the echo from the concavity in both OC and
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Fig. 1. (continued)

SC polarizations. All four single-date dual-polarization CW
spectra are shown in Fig. 5. The spectrum from May 29-30
clearly shows a strong OC spike at positive Doppler with no
corresponding SC spike; this is a sign of specular scattering
from large surface elements that are smooth at decimeter scales.
A weaker glint was seen on May 31-Jun. 1, when the same sec-
tion of the concavity’s wall was approaching us but was viewed
at a more oblique angle; other glints on the first and fourth runs
on May 28-29 (see the two OC spectra in Fig. 2) were produced
when the facing wall was receding from us. Perhaps the walls
of this concavity have a reduced density of surface rocks, anal-
ogous to the reduced density of boulders on the walls of 433
Eros’ large craters (Thomas et al., 2002).

Our viewing geometry, with subradar latitude of roughly
—40°, was ideal for detecting this southern concavity. It fol-
lows that the relative topographical blandness of our model’s
northern hemisphere might in part be an artifact of this viewing
geometry. (Much of this hemisphere is shaded yellow in Fig. 4,
indicating regions that received no radar coverage or else cov-
erage at large scattering angles.) However, the Kaasalainen et
al. convex-definite model places strong constraints on convex
topography, and reveals no large northern planar regions that
might represent large concavities in the actual asteroid.

Our model lightcurves fit the optical data fairly well overall,
in particular, we are able to reproduce the tertiary lightcurve
peak (e.g., 1989 Jun. 3 and 5 in Fig. 3). Residuals are generally
only hundredths of magnitudes, with the exceptions of 1976
May 31 and Jun. 1. The fits for 1989 May 25 and Jun. 5 work
as well or almost as well as the fits for those two dates displayed
in Fig. 27 of Kaasalainen et al., although direct comparison is
somewhat difficult since they work in intensity space while we
work in magnitude space. Our model also provides a good fit to
the 2002 Jun. 2 R-band lightcurve presented in Fig. 6 of Harris
et al. (2005), even though we did not use this recent lightcurve
as input for shape modeling.

4.2. Size

If lightcurves constrained the overall shape (3-D convex
hull) of our model and delay-Doppler images enabled us to
“dent” that convex model with concavities, CW spectra were
our best guide to the model’s overall size. Of course delay-
Doppler images also provided information here; but since our
Betulia images were weak compared to images of some other
NEA targets that we have modeled, spectra were the best mode
for measuring echo power near the target limbs. The Doppler
bandwidth in turn is directly proportional to the projected dis-
tance (breadth) between the limbs.

Our estimate of Betulia’s size (see Table 2) is consistent with
the radar-based diameter constraint (lower limit) of Pettengill et
al. (1979), is smaller than the polarimetric and radiometric di-
ameter estimates of Tedesco et al. (1978) and Lebofsky et al.
(1978), and is somewhat larger than either estimate of Harris et
al. (2005). Looking at the eight spectral fits in Fig. 2, we see
that while we can imagine adjusting the bandwidth of any one
of them by 10-20%, it would be hard to obtain a satisfactory
overall fit if we shrunk all of the bandwidths by 15% to match
the effective diameter that Harris et al. obtained from their ther-
mophysical model. We will revisit this issue in Section 7.

4.3. Spin vector

Allowing the model’s spin vector—rotation period, pole di-
rection, or both—to vary inevitably resulted in slightly poorer
fits than fixing the spin vector at the Kaasalainen et al. (2004)
value. As a result, our model uses the Kaasalainen et al. spin
vector.

4.4. Disk-integrated properties

Table 3 lists the disk-integrated properties of our model: OC
cross section oo, OC albedo 6o (OC cross section divided by
projected area), and circular polarization ratio uc = osc/ooc-
The OC albedo of 0.13 & 0.04 is typical of C-class main-belt
targets (Magri et al., 1999; Magri et al., 2006). It implies a near-
surface bulk density less than 2.4 gcm™3, an upper limit that is
consistent with C-class taxonomy (for lunar-like 50% regolith
porosity) but is not very restrictive.

The circular polarization ratio of 0.20 & 0.03 is fairly low:
The mean and median values for 48 radar-observed NEAs are
0.36 and 0.28, respectively, and only eight of the 48 have ratios
of 0.20 or lower. (See http://echo.jpl.nasa.gov/~lance/asteroid_
radar_properties/nea.sc_oc.html for an updated listing ranked
by wic.) This low ratio indicates that there is some but not much
decimeter-scale structure within a meter or so of the surface.
As discussed earlier, the large southern concavity produces a
largely specular OC echo—note the low ¢ value in Table 3 on
May 29-30 when we were looking directly into the concavity.
Hence Betulia is perhaps characterized by heterogeneous radar
scattering. Such heterogeneity would represent a limitation of
our model, which assumes a simple homogeneous radar scat-
tering law. (Indeed, the OC-only CW spike on May 29-30 is
poorly fit by the model—see Fig. 2.) We would want to have
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Fig. 2. Betulia CW spectra and model. Echo power, in units of standard deviations of the noise, is plotted versus Doppler frequency (Hz) relative to that of
hypothetical echoes from the target’s center of mass. Each of the eight OC spectra is displayed as a solid line, with the corresponding synthetic spectrum from the
model fit superimposed as a dashed line. The vertical bar at the origin indicates 1 standard deviation of the noise. Each label gives the observation date and the

run number. All spectra are displayed at the raw frequency resolution of 1.0 Hz.

radar data covering a wider range of subradar latitudes before
considering a more complex scattering law.

We wish to check for consistency with the CW-based ooc
and uc estimates of Pettengill et al. (1979) and Ostro et al.
(1991b). The unweighted mean of the seven opc estimates in
Table 3 is 3.2 km?; individual values range from 2.5 to 4.5 km?,
a strong rotational variation that is successfully reproduced
by our shape model (see Fig. 6). Pettengill et al. found that
ooc = 2.2+ 0.8 km?. Ostro et al. reported ooc = 3.9 km? and
uc = 0.16 = 0.01 based on Arecibo data, and ooc = 4.2 km?
and puc = 0.18 4 0.03 based on Goldstone 3.5-cm data; stan-
dard errors on the cross section estimates are about +1.0 km?
(25%) due to systematic calibration uncertainties. Our model
predicts a mean cross section of 2.6 km? for the 1976 experi-
ment and 3.1 and 3.5 km? for the 1989 Arecibo and Goldstone
experiments. Given the observational uncertainties, and given

the strong rotational variation we find for both ooc and pc, our
results are roughly consistent with these earlier studies.

As was mentioned in the introduction, Betulia’s high orbital
inclination has led to speculation that this object is an extinct
comet nucleus. Harmon et al. (2004) show that for five radar-
detected comet nuclei, the total radar albedo (6oc + 0sc) is no
greater than 0.10, averaging about 0.05. Hence Betulia, whose
total radar albedo is 0.15 £ 0.04, is unlikely to be an extinct
comet.

5. Radar astrometry and orbit refinement

Table 4 presents radar astrometry referred to center-of-mass
delay-Doppler locations obtained from the physical modeling,
in addition to astrometry from previous radar experiments. For
the six 2002 measurements that were obtained via shape mod-
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Fig. 3. Betulia lightcurves and model. Units on the x-axis are UT hours on the indicated date. Units on the y-axis are magnitudes; in many cases the magnitudes
are absolute, but all lightcurves were treated as relative photometry for shape modeling purposes. Data points for each lightcurve are displayed as crosses and the
corresponding synthetic lightcurve is displayed as a solid curve. The two lightcurves for 1989 May 27 were taken in the v and x bands of the eight-color photometric

system; see Fig. 45¢ of Wisniewski et al. (1997).

eling, we set the uncertainties approximately equal to the delay
resolution (baud length) and Doppler resolution of the images
used in the modeling process.

Table 5 shows orbital elements estimated from the available
radar and optical astrometry. Close approaches to planets and
large asteroids are listed in Table 6. Our usual criterion for de-
termining the time-span over which close planetary approaches
can be predicted is that the 3-sigma uncertainty (“TCA3Sg” in
Table 6) in the time of closest approach less than 0.1 AU is less
than 10 days and the difference in 3-sigma minimum and max-
imum approach distance is less than 0.1 AU. Betulia is unusual
in that its high-inclination orbit causes it to spend most of its
time away from the ecliptic plane, so that it has relatively few

close planetary encounters; those that it does have tend to occur
at high relative velocities, and are therefore of short duration.
As a result, growth in orbital element uncertainties is not a lim-
iting factor for encounter predictability for thousands of years
in either direction.

(It follows from this that the reduction in orbit uncertainty
provided by our new radar astrometry has not significantly
improved our ability to predict close approaches. To check
this, we compared close-approach times for orbit solutions ob-
tained with and without the new data for encounters during
the timespan A.D. 132-2539, and found that the differences
were only on the order of 0.01 day even at the extremes of this
range.)
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Fig. 3. (continued)

Instead the timespan covered by Table 6 is limited by close-
approach distance uncertainty: the range in possible close-
approach distances (the difference between “Max. dist.” and
“Min. dist.” in the table) is greater than 0.1 AU for a 2038 B.C.
encounter with Earth, so the table begins at the next Earth en-
counter in 2025 B.C. This same criterion yields a future Earth
encounter prediction limit of A.D. 6395.

6. Gravitational environment
6.1. Dynamical environment parameters
Given the detailed polyhedral shape of Betulia we can com-

pute a variety of quantities directly associated with it. For all
our discussions we assume a body-fixed coordinate frame with

origin at the body center of mass and aligned with the principal
axes of inertia of the asteroid (all computed assuming a uniform
density throughout). In light of results from the NEAR mission
(Yeomans et al., 2000), this assumption seems reasonable.

It is possible to compute the higher-order mass distributions
of the body, which include the inertia moments and the grav-
itational coefficients up to an arbitrarily high order, using the
methodology outlined in Werner (1997). Carrying out these
computations we find the moments of inertia:

1 1 I
= =2.58 km?, 2 =3.08 km?, = =3.90 km?, (1)
M M M
where we only quote the moments of inertia divided by the
body’s total mass M, which is obviously unknown. From the

moments of inertia we can solve for the ellipsoid with the same
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Fig. 3. (continued)

moments of inertia, and we find a body with semi-major axes
of 3.32 x 2.92 x 2.10 km.

Directly related to moments of inertia are the second degree
and order gravity coefficients (e.g., Hu and Scheeres, 2004).
These can be directly computed to be

CoR? = —1.072 km?, CnR? =0.125 km?, )

where R; is the arbitrary reference radius; these coefficients
have not been normalized. A measure of the asteroid’s shape
and gravity is defined in Hu and Scheeres as
o= b=k

I — I
For Betulia this value is 0 = 0.376. A body with ¢ =1 has a

prolate inertia matrix while one with o = 0 has an oblate ma-
trix, thus we see that Betulia has an intermediate index. The

3

gravity field of Betulia has been computed, under the constant
density assumption, up to a high degree and order. Appendix C
gives the 4th degree and order gravity field in terms of normal-
ized gravity coefficients.

A peculiar feature of Betulia is its triangular shape along its
equator. This gives rise to some unique dynamical properties
that are intimately related to its gravity field. Due to its shape
the 3rd degree and order gravity field coefficients of Betulia are,
on average, much larger than for most typical asteroids. The
global properties of a gravity field can be estimated by com-
puting the root-mean-square magnitude, o, of the normalized
gravity coefficients of each degree,

1 & - .
on = 2n+1Z(C5m+53m)’ @

m=0
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Table 2
Properties of the model®

Extents along principal axes (km)

Extent ratios

Area (kmz)
Volume (km3)
Equivalent diameter of a sphere with the model’s volume (km)

Ratios of the principal moments of inertia of a uniform-density asteroid with
the model’s shape

Dimensions of the dynamically equivalent equal-volume ellipsoid (DEEVE,
the homogeneous ellipsoid having the same moment-of-inertia ratios and
volume as the model) (km)

Epoch when the positive side of the longest (x) principal axis is in the plane
of the sky while approaching Earth (Julian date)

Angular radar scattering law exponent n
Equivalent spherical OC radar albedo
Sidereal period (h) (from Kaasalainen et al., 2004)
Pole ecliptic longitude (°) (from Kaasalainen et al., 2004)

Pole ecliptic latitude (°) (from Kaasalainen et al., 2004)

x 6.59 + 10%
y 5.85+10%
z 4.19 + 10%
x/y 1.13 £ 10%
y/z 1.40 £ 15%
97.2 £20%
82.0£30%
539+ 10%
I7/1x 1.51 £20%
I7/Iy 1.27 £ 20%
x 6.55+ 10%
y 5.77 £ 10%
z 4.14 £ 10%
2452426.65980°
3.0£1.0
0.14 £0.04
6.13836 == 0.00001
136°
+22¢

4 Listed uncertainties on extents along the principal axes, extent ratios, equivalent diameter, and DEEVE dimensions are conservatively assigned standard errors
based on inspecting the results of a large number of modeling runs that started from ellipsoids of various sizes, axis ratios, and angular radar scattering law exponents.
Since the model’s linear dimensions are uncertain by 10% and its extent ratios by no more than 15%, we assigned 20% uncertainties to area and to ratios of moments
of inertia and a 30% uncertainty to the volume. We carried out a multirun grid search using different values of angular radar scattering law exponent n in order
to estimate this parameter and its standard error. The standard error on the equivalent spherical OC radar albedo is dominated by the 25% systematic calibration
uncertainty on measured OC cross sections. The last three tabulated quantities and their uncertainties are taken directly from Kaasalainen et al. (2004).

b This epoch corresponds to UT 2002 Jun. 01 03:50:07. The light from this event reached Earth at JD 2452426.66120 (UT 2002 Jun. 01 03:52:07).

¢ Kaasalainen et al. (2004) state that the error radius on the pole direction is 5-10°.

where the C,,;, and S, are the normalized gravity coefficients
(Kaula, 2000). Table 7 shows the value of o, and the ratios
03/02 and 04 /07 for several asteroids whose gravity fields have
either been measured or estimated from a shape model. If we
compare the o, for Betulia with other asteroid gravity fields of
interest we note the relative importance of its 3rd degree field
component as compared to the 2nd and 4th degree contribu-
tions. This provides a measure of the importance of the 3rd and
4th degree gravity terms relative to the 2nd degree terms. Other
bodies with a strong 3rd degree contribution also have a strong
4th degree contribution. This means that the 3rd degree gravity
will play a large role in the orbital evolution close to Betulia.

In order to discuss the dynamical space about the body, we
must assume a bulk density. Since the near-surface bulk density
is less than 2.4 gcm™ (see Section 4.4), we assume a density
of 2.0 gecm ™3 in the following, realizing that all the subsequent
computations would change somewhat given a different density.
This choice yields gravitational parameter u = GM = 1.09 x
1073 km? s72 where G = 6.6742 x 1078 cm? g’1 s72,

6.2. Derived dynamical properties for close proximity and
surface motions

6.2.1. Close proximity dynamical environment
The simplest parameterization of the close proximity dy-
namical environment can be made by computing the “resonance

radius” of the body, which we define as the distance at which
the point mass gravitational attraction of the body equals the
centripetal acceleration due to the rotation of the asteroid. This
is computed as res = (1L/ @?)V/3, where w is the rotation rate of
Betulia, equal to 2.8433 x 10~* rads—!. For Betulia this radius
1S rres = 5.13 km, about 1.9 mean radii from the Betulia center
of mass. This also corresponds to the ideal Betulia-synchronous
orbit radius.

A more precise measure of the close proximity environment
is found by precisely computing the orbits synchronous with
the rotating body (Scheeres, 1994; Scheeres et al., 1996). For
all other uniformly rotating asteroids investigated to date there
are only four such orbits, corresponding to true circular orbits
about the asteroid with orbit period exactly equal to the rota-
tion period. These orbits appear as equilibrium points in the
equations of motion about the asteroid when stated in the body-
fixed (i.e., rotating) frame. They generally lie close to the axes
of minimum and intermediate moment of inertia.

Due to Betulia’s enhanced 3rd degree and order gravity field
we find the first exception to this rule. Betulia has a total of six
equilibrium points close to its equatorial plane (see Fig. 7). Of
these, four are unstable and two are stable. This complex en-
vironment is unique among asteroids studied to date, and the
existence of stable synchronous orbits implies that there may
be ejecta trapped in such orbits at Betulia. We number the equi-
librium points starting from the one closest to the x-axis and
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Fig. 4. Views of our Betulia model along its principal-axis directions. The rendering in the upper panel of six views uses a Lambertian backscattering law and has
been effectively smoothed as described in Section 3.1.2. Yellow-shaded regions in this panel were never viewed by the radar or else were viewed only at scattering
angles greater than 60°. The viewing geometry in the lower panel of six views is identical to that in the upper panel, but these renderings are unsmoothed and are

color-coded for gravitational slope in degrees.

increasing counter-clockwise. Their coordinates in a body-fixed
frame (x, y, z) are given in Table 8. Points E, E3 and Es are
hyperbolic unstable (Scheeres et al., 1996) with characteristic
times of 1.74,4.12 and 1.65 h, respectively. Point E¢ is complex
unstable with a characteristic time of 3.76 h with an associ-
ated period of 8.4 h for the spiral motion. Points E> and E4
are stable, and motion in their vicinity consists of oscillations
with three distinct periods, two in-plane and one out-of-plane.
For E, these periods are 18.0, 7.0 and 5.8 h, while for E4 they
are 19.6, 7.0 and 5.8 h. The longest in-plane periods differ for
the two equilibrium points. Based on earlier studies (Hu and
Scheeres, 2004) we expect that stable, direct orbits will exist in
the equatorial plane at radii above 8 km. Based on that analy-
sis, however, there may be isolated regions of stability between
the resonance radius of 5.1 km and 8 km, which is indepen-
dently consistent with our observed stable equilibrium points
E; and E4.

6.2.2. Surface environment

Following the methodology outlined in Scheeres et al.
(1996), we compute the apparent slope over the surface of the
asteroid, the total gravitational plus centripetal accelerations
over the body, and the necessary and sufficient speeds for ejecta
to escape from the asteroid. As seen in the lower half of Fig. 4,
Betulia has a very relaxed surface, with computed slopes rang-
ing up to a maximum of 31°, less than the traditional “angle
of repose” for granular material. [During the “vertex” phase
of shape modeling we found that lowering the “nonsmooth”
penalty weight to permit a rougher surface (see Section 3.3)
did not significantly improve our fits, so we instead adopted
a fairly smooth model.] The average slope over the body is
8.7°. In terms of distributions of the slopes, 50% of the body
has slopes less than 8° and 95% of the body has slopes less
than 18°.
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Fig. 5. OC (solid lines) and SC (dashed lines) echo spectra for each of four observing dates on which CW spectra were obtained. The spectrum for 2002 May 28-29
is a weighted sum of five runs; only one run was obtained on each of the other three dates. Echo power, in units of standard deviations of the noise, is plotted versus
Doppler frequency (Hz) relative to that of hypothetical echoes from the target’s center of mass. (Note the different vertical scales for the four spectra.) The vertical
bar at the origin indicates 1 standard deviation of the OC noise. Each label gives the UT observing dates. All spectra are displayed at the raw frequency resolution
of 1.0 Hz. Rotation phase coverage is depicted in the upper right portion of each plot. Each radial line segment denotes the phase (defined as in Table 1) of a single
run; the length of the segment is proportional to the OC noise standard deviation of the corresponding spectrum. Phase increases counterclockwise, with zero phase

at the three o’clock position.

The maximum total surface acceleration (combining gravi-
tational and rotational accelerations) is 1.53 x 1073 ms~2 and
the minimum is 1.05 x 1073 ms~2, for a variation of 46% from
minimum to maximum. These accelerations can be broken into
components normal to the local surface and tangential to the lo-
cal surface. The accelerations normal to the surface range from
0.99 x 1073 to 1.53 x 1073 ms~2. The accelerations tangent
to the surface range from ~ 0 to 0.64 x 107> ms~2.

The surface environment can also be characterized by the
necessary and sufficient surface launch speeds for escape from
the asteroid. The necessary launch speeds are the absolute min-
imum speed a particle must have if it is to escape from the
asteroid; that is, any launch speed less than this ensures that
the particle will reimpact at some point in the future. Particles
with less than the necessary escape speed are confined to lie
within the contour in Fig. 7 that passes through the E5 point
and is closer to Betulia. For larger ejecta speeds, these isolating
curves open and it becomes possible for ejecta trajectories to es-
cape from Betulia. These necessary speeds range from 1.07 to
1.67 ms~! over the asteroid’s surface. Sufficient launch speeds

are speeds that ensure that a particle launched in a direction nor-
mal to the surface will escape. These speeds range from 2.02 to
3.32 ms~! over the surface. For smaller particles, these speeds
will be reduced due to the effect of solar radiation pressure.

7. Discussion

Our Betulia shape model very much resembles a version of
the Kaasalainen et al. (2004) convex-definite model to which a
large concavity and various small concavities have been added.
This general agreement is reassuring but not very surprising: the
two studies used essentially the same lightcurve data from the
1976 and 1989 apparitions, and it is lightcurves which constrain
the asteroid’s 3-D convex hull. (In principle radar data alone can
do this, but this requires thorough coverage in subradar latitude
and rotation phase; as seen in Table 1, the delay-Doppler images
used for shape modeling cover three-quarters of a rotation but
only five degrees in latitude.) The agreement between models
suggests that convex-definite shape reconstructions—or, in our
case, reconstructions that involve a quasi-convex-definite inter-
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Fig. 6. Observed and predicted OC cross section as a function of rotation
phase—the “radar lightcurve”—for 2002 May 31-Jun. 1, when subradar lat-
itude § was —41°. The open triangle and the filled squares are estimates based
on CW and delay-Doppler data, respectively; the latter are inherently noisier
than the former. The solid line is the predicted lightcurve, which was gener-
ated on the assumption of constant § = —41°. (In fact § changed by 0.12°
between the first and last observations on this date.) Rotation phase is defined
as in Table 1. A plot of OC albedo as a function of rotation phase would look ap-
proximately the same as the displayed plot (apart from the vertical scale), since
the model’s projected area is nearly constant with rotation phase (peak-to-peak
variation ~7.5% of the mean projected area).

mediate stage—are indeed robust, as independent studies using
independent software packages have reached similar results.
Additionally, radar has confirmed that the large planar region
in the Kaasalainen et al. model is the site of a large concavity,
just as those authors suggested. Lightcurve data are largely in-
sensitive to concavities but can provide broad hints as to their
locations.

The main southern concavity has a diameter on the order of
Betulia’s radius. The only other asteroids known to have such
large craters relative to their radii are 4 Vesta (Thomas et al.,
1997) and 253 Mathilde (Veverka et al., 1999). Both Betulia
and Mathilde are C-class objects, and perhaps the carbonaceous
material characteristic of this taxonomic class was conducive to
the formation of large craters that did not entirely disrupt these
bodies, despite their being much smaller than Vesta. For exam-
ple, cratering may have occurred through compaction (Housen
etal., 1999). But of course it is difficult to generalize when only
two such objects are known.

When we consider Betulia’s absolute size, we find that our
model’s maximum diameter is consistent with the radar-based
lower limit of Pettengill et al. (1979) but that its effective diame-
ter is somewhat larger than the estimates of Harris et al. (2005).
At first this would seem to indicate a conflict: the Pettengill et
al. result is consistent with the polarimetric and radiometric size
estimates of Tedesco et al. (1978) and Lebofsky et al. (1978),
and Harris et al. explicitly state that their results conflict with
these earlier estimates. Yet the discrepancy between our model
and the Harris et al. thermophysical model is much reduced if
we reanalyze two of these earlier datasets.

One of the reviewers, Alan Harris (DLR), points out that ap-
plying the Cellino et al. (1999) calibration to the Tedesco et al.
polarimetric slope yields a visual albedo of 0.069 & 0.012, and
that this albedo and the Harris et al. (2005) absolute magnitude
estimate H = 15.1 £ 0.3 imply a diameter of 4.83 £ 0.78 km,

substantially smaller than the 7-km estimate of Tedesco et al.
We obtain roughly the same diameter if we use the Tedesco et
al. Ppin value rather than the polarimetric slope, or if we adopt
the Lupishko and Mohamed (1996) calibration rather than that
of Cellino et al. Using the brighter 14.8 & 0.3 H-magnitude es-
timate of Wisniewski et al. (1997) increases the diameter by
15%, to 5.55 £ 0.90 km.

We also can reanalyze the 1976 radar data: since we now
know the viewing geometry for the twenty CW spectra ob-
tained by Pettengill et al. (1979)—for example, the subradar
latitude was about +-2°—we no longer need to settle for placing
a lower limit on Betulia’s maximum breadth. Our model pre-
dicts zero-crossing bandwidths ranging from 26.4 to 30.1 Hz,
with a mean bandwidth of 28.9 £=2.9 Hz; the uncertainty results
from the 10% standard errors on our model’s linear dimensions.
Pettengill et al. measured a mean zero-crossing bandwidth of
26.5 £ 1.5 Hz, which is within our one-sigma prediction inter-
val. So we can say that our model successfully reproduces the
1976 CW bandwidths, but we also can say that if we increased
the effective diameter from 5.4 km to the Lebofsky et al. (1978)
value of 7.5 km, the resulting model would badly overestimate
those bandwidths.

In short, neither the polarimetric data nor the radar data from
the 1976 apparition can still be said to support the 7.5-km di-
ameter estimate of Lebofsky et al. (1978). Hence the entire
motivation for that estimate—and for the high-thermal-inertia
model that produced it—is removed.

What can we say about the remaining 15% difference be-
tween our model’s effective diameter and that produced by the
Harris et al. (2005) thermophysical model? The difference be-
tween 5.39 &+ 0.54 and 4.57 & 0.46 km is only formally sig-
nificant at about the one-sigma level; nevertheless, we obtain a
significantly poorer fit to the radar data if we fit a shape model
with the smaller size. This smaller model (not shown) correctly
fits the CW bandwidths (to our surprise) but at the expense of
getting the cross sections wrong, and its southern concavity is
less pronounced so that the quality of the image fits is somewhat
degraded. The overall fit is not bad but is not as good as for our
adopted model. So we can say that the two models agree much
better than did past models but that the remaining difference is
still significant.

For completeness we should consider possible problems
with our radar-based model. As discussed earlier, it is the
Doppler bandwidths of the CW spectra which yield our strong-
est constraints on the scale of the target. We cannot explain the
remaining 15% difference by supposing that we are using the
wrong pole direction—a smaller asteroid viewed closer to its
equator will yield the same bandwidth—because Harris et al.
adopted the Kaasalainen et al. (2004) spin/shape model, and we
adopted the same spin vector for our own model. One might
instead claim that our radar scattering-law exponent, n = 3, is
too large (i.e., that our model is too limb-darkened): if echoes
from the limbs are weak enough to be lost in the noise, a larger
model is needed to match a given bandwidth. But this explana-
tion must also fail, not only because our simulated spectra in
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Table 3

Disk-integrated radar properties

Type Runs 2002 observing date (UT) Subradar lat., long. (°) OC SNR ooC (km?) Proj. area (km?) 60C e

Ccw 5 May 28-May 29 —44, 206 83 3.24 25.35 0.128 0.18

Ccw 1 May 29-May 30 —43,279 55 4.52 26.61 0.170 0.11

Cw 1 May 31-Jun. 1 —41, 328 48 2.76 25.86 0.107 0.24

Ccw 1 Jun. 1-Jun. 2 —39,13 24 2.53 24.56 0.103 0.26
0.127 0.20

Delay-Doppler 17 May 29-May 30 —43, 198 34 2.64 25.45 0.104 -

Delay-Doppler 15 May 31-Jun. 1 —41, 262 45 3.61 25.74 0.140 -

Delay-Doppler 9 Jun. 2-Jun. 3 —38,4 18 3.34 24.63 0.136 -
0.127 -

Adopted values and standard errors

60C 0.13 £0.04

ne 0.20£0.03

Notes. For all CW spectra and delay-Doppler images that were strong enough to be used for shape modeling, we list the type of observation, the number of runs, the
observing date, the subradar latitude and longitude at mid-receive, the signal-to-noise ratio of the summed OC data, the OC cross section oo, the mean projected
area, the OC albedo 6, and the circular polarization ratio pc. Subradar longitude is east longitude measured from the body-fixed +x axis (which is very close to
the +x principal axis), and is equal to 360° minus the rotation phase listed in Table 1. We only list ¢ for CW spectra, since delay-Doppler images are inherently
noisier than spectra and hence yield far weaker constraints on uc. The apparent 6g¢ discrepancy between spectra and images for May 29-30 and for May 31-Jun. 1
is partly due to this increased image noise but is largely, according to our shape model, due to strong variation in OC cross section with subradar longitude (see
Fig. 6). Average values of 6gc and pc listed for spectra and for images are unweighted means of single-date values. The standard error on our adopted circular
polarization ratio reflects date-to-date variations; the standard error on our adopted OC albedo also reflects 25% calibration uncertainty.

Table 4

Radar astrometry?®

Date (UT) Data type Measurement Residual (sol #72)
Model

2002 06 03 00:09:00 Delay 248.73123303 s 2.0 ps —1.198 us
2002 06 03 00:09:00 Doppler —138,436.315Hz+ 1.0 Hz 0.136 Hz
2002 06 01 00:57:00 Delay 240.88892798 s = 2.0 ps 1.851 ps
2002 06 01 00:57:00 Doppler —80,205.348 Hz + 1.0 Hz 0.029 Hz
2002 05 30 01:10:00 Delay 237.42002297 s + 2.0 ps —0.877 ps
2002 05 30 01:10:00 Doppler —16,023.930 Hz 4+ 1.0 Hz —0.041 Hz
Onsite

2002 05 28 23:56:00 Delay 237.473411 s £ 10.0 ps —16.544 psb
Pre-2002

1989 05 29 00:20:00 Doppler —72175.0 Hz + 5.0 Hz —2.141 Hz
1989 05 28 01:38:00 Delay 185.094484 s + 12.0 ps 3.161 ps
1989 05 26 01:42:00 Delay 185.537450 s £ 12.0 ps 2411 ps
1989 05 23 12:00:00 Doppler 501,134. Hz + 20.0 Hz 2.471 Hz
1976 05 19 05:52:16 Doppler 186012.5 Hz + 1.0 Hz —1.549 Hz®
1976 05 18 05:56:50 Doppler 225,980.0 Hz £ 1.0 Hz 2.773 Hz®

4 Entries give estimates of the round-trip time delay and Doppler frequency for hypothetical echoes from Betulia’s center of mass received at the indicated UT
epoch. The first set of six measurements was obtained via shape modeling; we have set the uncertainties approximately equal to the delay and Doppler resolution of
the images used in the modeling process. The next listed measurement is a visual estimate made at the start of the 2002 experiment. The last set of six measurements
was made during the 1976 and 1989 radar experiments. The 1989 May 23 measurement was made at Goldstone and is referenced to the intersection of the azimuth
and elevation axes of the DSS 14 dish. The other twelve measurements were made at Arecibo and are referenced to the main antenna’s center of curvature.

b This measurement was omitted from orbital solution 72 because of the large residual, because it conflicts with our shape model, and because it was based on a
weak image. It is a visual estimate made near the beginning of the 2002 radar experiment in order to update the ephemeris from solution 32 to 34, and represents a
delay correction of —200 ps with respect to solution 32.

¢ The two 1976 Doppler residuals suggest that the 1.0-Hz uncertainty estimates are too small. These two Doppler measurements were made by using a spherical
model of the target to estimate the midpoints of the two CW spectra; as seen in Fig. 4, Betulia bears only limited resemblance to a sphere, so the uncertainties were
probably underestimated. Increasing the assigned uncertainties to 2 or 3 Hz does not significantly change the residuals, indicating that the 1.0-Hz uncertainties are
not significantly constraining the orbital solution. However, there is insufficient evidence to conclude that the dynamical model is inadequate.

Fig. 2 show little sign of wide, weak tails, but also because our What, then, will bring the two models into complete accord?
best-fit models with » = 1 and 2 are about the same size (linear ~ The radiometric diameter depends on Betulia’s absolute magni-
dimensions within a few percent, volumes within one percent) tude, and we have seen that the current uncertainty on this mag-
as our adopted model. nitude results in a 15% diameter uncertainty. Both models as-



170 C. Magri et al. / Icarus 186 (2007) 152-177

Table 5
Betulia orbital solution (#72)

J2000 heliocentric ecliptic coordinates
Epoch 2,453,510.50000 = 2005 May 20.00000

Osculating element Value Post-fit std. dev.

Eccentricity 0.488002954 + 0.000000025

Perihelion distance 1.124674339 + 0.000000055 AU

Time of perihelion 2,453,599.253860 JD + 0.000013 d (2005 Aug. 16.75386)
Longitude of ascending node 62.3322519 + 0.0000022°

Argument of perihelion 159.490079 + 0.000015°

Inclination 52.095404 + 0.000013°

Semi-major axis 2.1966422439 + 0.0000000006 AU

Orbit period 1189.15214571 + 0.00000046 d (3.25566409161 yr)
Mean anomaly 333.130949010 + 0.000000079°

Notes. The optical data consisted of 369 usable measurements, with post-fit residual mean and r.m.s. of (0.149, 0.904) arcsec. The normalized r.m.s., obtained by
first dividing each measurement by its assigned uncertainty, is 0.751. For the five usable radar delay measurements and seven radar Doppler measurements listed
in Table 4, the mean and r.m.s. are (1.07, 1.77) ps and (0.24, 1.71) Hz, and the delay and Doppler normalized r.m.s. values are 0.551 and 1.214, respectively. (See
footnote c to Table 4 for a discussion of why the Doppler normalized r.m.s. is somewhat high.) The combined optical-plus-radar normalized r.m.s. is 0.756.

sume homogeneous surface properties, and we have some hints
(see Section 4.4) that this is an oversimplification in the case of
our radar model. One last item is that, as pointed out by Harris
et al. (2005), their thermophysical model “takes no account of
surface structure on a spatial scale intermediate between that of
craters and that of the whole body”—that is, takes no account
of Betulia’s large southern concavity, which could “influence
shadowing patterns on the surface.” We speculate that this con-
cavity significantly influences the surface temperature distribu-
tion and hence the disk-integrated IR emission. Repeating the
thermophysical analysis with the new radar-based shape model
could reveal whether or not this speculation is valid. This rep-
resents an excellent opportunity to use a well-observed object
to study how a complex shape (a quasi-triangular pole-on sil-
houette and a large crater) can influence radiometric diameter
estimates.

The prospects for further radar study of Betulia are limited,
as shown in Table 9. At its next close approach in June 2015,
the target will come within 0.35 AU of Earth—nearly 50% fur-
ther away than in 2002—and will be viewed at subradar latitude
—55°, somewhat further south than in 2002. For typical 2006
telescope performance at Arecibo, the expected SNR per date
for 2015 CW viewing will peak at 77, so some refinement of
the southern hemisphere of our model may be possible. But
the 2028 and 2041 apparitions will be at greater distances and
hence will be much weaker, so there will be little point in ob-
serving at those times. All other close approaches during this
century have single-digit SNR per date. In particular, appari-
tions that would allow us to view the northern hemisphere are
not only distant but also reach minimum distance while Betulia
is in the southern sky where Arecibo cannot observe it. Hence
the current model will likely represent our best estimate of Be-
tulia’s shape for some time to come.
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Appendix A. Delay-Doppler impulse response function
and image calibration

A.l. Impulse response function

As described in Section 3.1.2, for each observing epoch
our shape modeling software (SHAPE) generates a plane-of-
sky (POS) frame—a simulated diffraction-free optical image of
the target—and then determines the contribution of each pixel
in this frame to the data obtained at that epoch. In particular,
if the observation in question resulted in a delay-Doppler im-
age, SHAPE considers each POS pixel in turn and determines
its radar cross section contribution to each pixel in the delay-
Doppler image; that is, each POS pixel generally contributes
to more than one image pixel. We wish to derive the form of
these contributions, the delay-Doppler response function that
maps echo power on the sky to cross section in a reduced delay-
Doppler image.

Let us be more specific. Suppose we have a POS pixel with
area Apos. SHAPE finds the triangular model facet that is pro-
jected onto this pixel’s center and uses this information to as-
sign a delay d and a scattering angle 6 to the entire POS pixel.
Doppler frequency f varies continuously across the pixel, since
it varies linearly with distance in the plane of the sky perpen-
dicular to the projected rotation axis. The software then maps
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Table 6

Betulia close approaches

Date (coordinate time) Body CA dist. (AU) Min. dist. (AU) Max. dist. (AU) Viel (km/s) TCA3Sg (min)
B.C.2025 Dec.21.16094 Earth 0.066320 0.045590 0.087555 27.6 1453.7
B.C. 1969 Jun. 26.90882 Venus 0.093067 0.091486 0.094943 31.0 313.09
B.C. 1963 Dec. 20.81244 Earth 0.067125 0.065880 0.068372 27.5 79.20
B.C. 1956 Sep. 09.04350 Venus 0.031427 0.028322 0.034539 28.8 224.72
B.C. 1923 Apr. 21.47408 Venus 0.050049 0.049339 0.050758 32.1 47.36
B.C. 1901 Dec. 15.90302 Earth 0.035467 0.034602 0.036349 29.9 75.67
B.C. 1826 Dec. 13.64580 Earth 0.091225 0.090448 0.092003 31.4 56.33
B.C. 1738 Dec. 18.59925 Earth 0.086714 0.086403 0.087029 27.9 37.29
B.C. 1587 Mar. 01.59140 Venus 0.096266 0.095332 0.097205 26.9 105.02
B.C.903 Nov.02.61777 Venus 0.098121 0.097096 0.099154 27.5 127.18
B.C.874 Aug.02.81053 Vesta 0.094441 0.094059 0.094826 15.4 48.15
B.C.749 Jan. 14.74836 Venus 0.073889 0.073127 0.074657 31.0 74.82
B.C.682 Dec.05.94811 Vesta 0.056243 0.055930 0.056556 15.3 19.88
B.C.642  Sep. 02.07489 Venus 0.092343 0.092220 0.092466 27.6 11.70
B.C.558 Oct. 16.29141 Ceres 0.084880 0.084875 0.084885 15.6 12.89
B.C.489  Apr. 05.06631 Vesta 0.084707 0.084622 0.084792 15.9 8.52
B.C.489 Nov. 14.70002 Venus 0.089103 0.088849 0.089358 31.4 17.74
B.C.348 Feb. 08.85926 Venus 0.084865 0.084539 0.085190 27.7 23.14
A.D.670 May 10.70755 Earth 0.089186 0.089166 0.089206 29.2 7.96
A.D.745 May 10.65399 Earth 0.068762 0.068756 0.068769 29.1 4.69
A.D.820 May 07.49499 Earth 0.079255 0.079164 0.079345 28.7 10.23
A.D.908 May 12.50263 Earth 0.060499 0.060470 0.060528 29.4 3.13
A.D.983 May 14.56905 Earth 0.079714 0.079621 0.079807 29.6 7.15
A.D.1045 May 08.27647 Earth 0.039166 0.039148 0.039184 28.7 1.40
A.D.1133 May 09.07269 Earth 0.017079 0.017079 0.017079 28.8 0.02
A.D.1146 May 13.08129 Earth 0.063332 0.063329 0.063335 29.3 0.19
A.D.1312 May 07.98030 Earth 0.042685 0.042684 0.042685 28.5 0.04
A.D.1325 May 11.36259 Earth 0.051773 0.051772 0.051773 29.0 0.05
A.D.1338 May 12.59566 Earth 0.074585 0.074584 0.074586 29.0 0.07
A.D.1478 May 07.72413 Earth 0.074635 0.074635 0.074636 28.3 0.03
A.D.1491 May 13.20155 Earth 0.098326 0.098326 0.098327 29.1 0.03
A.D.1644 May 20.07144 Earth 0.086247 0.086247 0.086247 28.5 0.03
A.D.3470 Dec.25.25523 Pallas 0.072523 0.072516 0.072529 20.8 0.56
A.D.3780 Feb. 05.53399 Pallas 0.086582 0.086580 0.086584 20.5 0.57
A.D.5494 Jun. 26.64738 Earth 0.079393 0.079392 0.079395 28.6 0.10
A.D.5660 Jun. 25.53517 Earth 0.058178 0.058175 0.058180 29.0 0.12
A.D.5673 Jun. 26.75635 Earth 0.047008 0.047006 0.047010 28.9 0.12
A.D.5686 Jun. 29.87912 Earth 0.082335 0.082332 0.082339 28.5 0.28
A.D.5852 Jun. 24.64695 Earth 0.085632 0.085625 0.085638 29.7 0.44
A.D.5865 Jun. 27.71136 Earth 0.029123 0.029121 0.029125 29.1 0.18
A.D.6063 Jun. 30.38256 Earth 0.020831 0.020828 0.020833 29.1 0.25
A.D.6076 Jun. 29.25309 Earth 0.020254 0.020252 0.020257 29.3 0.90
A.D.6089 Jul. 01.12066 Earth 0.046472 0.046378 0.046567 29.1 8.06
A.D.6229 Jun. 26.23483 Earth 0.097978 0.097968 0.097989 30.2 0.95
A.D.6242 Jul. 01.17592 Earth 0.049147 0.049144 0.049150 29.4 1.80
A.D.6395 Jul. 01.77422 Earth 0.076547 0.076530 0.076565 29.6 23.30

Notes. This list includes planetary encounters closer than 0.1 AU. Calendar dates after A.D. 1582 Oct. 15 are reported in the Gregorian calendar; prior to that, dates
are reported in the Julian calendar. “CA dist.” is the highest probability approach distance of the reference trajectory to the given body. “Min. dist.” and “Max.
dist.” are the 3-sigma distances from the body at the nominal encounter time. “V¢)” is the nominal relative velocity. “TCA3sg” is the linearized covariance-mapped
3-sigma uncertainty on the time of closest approach. 1580 Betulia solution #72 was numerically integrated over the interval between 4000 B.C. and A.D. 8000.
The list terminates just prior to the Earth encounter for which the time uncertainty (“TCA3sg”) exceeds 10 days (14,400 min) or else the distance uncertainty
(“Max. dist.”—“Min. dist.”) exceeds 0.1 AU, whichever occurs first. The span of statistically reliable encounter predictions so-defined is therefore 2025 B.C. to
A.D. 6395, based on the solution #72 data-set. Integrations were performed using the DE-408 planetary ephemeris and include relativistic perturbations due to the
Sun, planets, and Moon as well as asteroids 1 Ceres, 2 Pallas and 4 Vesta. The limits of predictability for objects having multiple planetary encounters over centuries
will normally be affected by additional factors such as radiation pressure, Yarkovsky acceleration, planetary mass uncertainties and asteroid perturbations. Betulia’s
planetary encounters tend to be fast and distant, mitigating the growth in such perturbative effects, but the factors are not included here since the relevant physical
models are imprecisely defined and key parameters are unmeasured.

power from this POS pixel to the various pixels in our delay- per baud. (We typically reduce our images so that y is the same
Doppler image. Each image pixel has “width” Af and “height” as the number of samples per baud s, but this need not be the
Ad =b/y,where Af is frequency resolution, Ad is delay res- case; for example, we could take data at six samples per baud

olution, b is baud length, and yx is the number of image rows  but then decode only every third delay lag, so that s = 6 and
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Fig. 7. Zero-velocity curves about Betulia, and locations of the equilibrium
points. The axes are in units of kilometers.

Table 7

Gravity power spectra

Asteroid 09 03/0n o4/09
1580 Betulia 0.032 0.41 0.18
433 Eros 0.098 0.14 0.23
4179 Toutatis 0.104 0.37 0.82
4769 Castalia 0.085 0.21 0.32
6489 Golevka 0.027 0.48 0.35
25143 Ttokawa 0.12 0.33 0.62

Notes. Comparison of gravity power spectra for select asteroids. Quantities
09, 03, and oy are the r.m.s. magnitudes of the 2nd, 3rd, and 4th degree nor-
malized gravity coefficients [see Eq. (A.4)]. The table provides the value of o,
and the ratios 03 /0, and o4 /07 for each body. This provides a measure of the
importance of the 3rd and 4th degree gravity terms relative to the 2nd degree
terms. Data for Eros, Toutatis, Castalia, Golevka, and Itokawa are taken from
Miller et al. (2002), Scheeres et al. (1998), Scheeres et al. (1996), Hudson et al.
(2000), and Fujiwara et al. (2006), respectively.

Table 8

Equilibrium point locations and stability

Equilibrium point x (km) y (km) z (km) Stability
E| 5.101 —1.601 —0.081 Unstable
E> 2.156 4,742 0.051 Stable
E3 —1.320 5.056 0.023 Unstable
Ey —2.500 4.580 —0.004 Stable
Es —5.053 —-1.717 —0.068 Unstable
Eg 0.065 —5.109 0.062 Unstable

Note. See text for descriptions of each equilibrium point and its stability status.

x = 2.) We now ask, what does echo power on the sky “with-
in” this POS pixel contribute to the radar cross section o in an
image pixel centered at frequency f; and delay d;?

Clearly this contribution will involve the product of the dif-
ferential scattering law, do/d A = pcos" @, and the area ele-
ment tangent to the asteroid’s surface, d A = Apos sec 6. There
is also a “code filter” Y (f) to consider. If we take data using a
repeating binary phase code of length L, we decode images in
the time domain by cross-correlating our voltage samples with

Table 9
Betulia radar opportunities, 2006-2100
Date RA, Dec. Subradar lat. Dist. Max.
©) ©) (AU) SNR/date
2015 Jun. 03 185, +24 =55 0.352 77
2028 Jun. 08 180, +25 -59 0.478 24
2041 Jun. 14 179, +22 =59 0.584 11

Notes. Radar apparitions between 2006 and 2100 for which the predicted OC
signal-to-noise ratio (SNR) per date for CW measurements at Arecibo reaches
10 or greater. Listed quantities are the UT date of maximum SNR per date; the
target’s right ascension, declination, subradar latitude, and distance from Earth
on that date; and the maximum OC SNR per date. We assume typical current
Arecibo observing parameters: sensitivity 10 K/Jy, system temperature 25 K,
and transmitted power 900 kW. We also assume an OC radar albedo of 0.13
(see Table 3), and we take into account the increase in SNR that results from
viewing at high subradar latitude. For comparison, the maximum SNR per date
predicted for the 2002 radar experiment was 328.

a copy of the code, and this shows up in the frequency domain
as multiplication by a function whose width is inversely propor-
tional to code repetition time p = Lb:

Y(f):sincz(n£>,

where sinc x = (sinx)/x and unaliased bandwidth B =1/p. In
other words, our images are less sensitive as we move away
from 0 Hz. Since this variation is slow, we simply evaluate Y
using the frequency f at the center of our POS pixel.

It turns out that even a delta-function signal at (f, d) will
contribute to more than one image pixel. In the Doppler dimen-
sion, the frequency response function F(f, f;) represents the
“ringing” phenomenon which also shows up in CW spectra:

F(f, fi)= sinczl:n<fA;fﬁ>j|,

where Af is the image’s frequency resolution. (In deriving this
result and those below, we ignore the small quantities 1/L and
1/n, where n = B/Af is the length of the FFT used to produce
Doppler spectra at each decoded delay lag.) In practice we must
modify this expression in two ways. First, the sinc? function
has infinite extent, but we do not wish to waste computing time
determining very weak contributions from the function’s tails.
Instead we impose an arbitrary cutoff, zeroing out all contribu-
tions beyond three image columns to either side of f. Second,
SHAPE deals not with delta functions but with POS pixels, and
f varies continuously within each POS pixel. Since F varies
rapidly with f, the value of F' can change greatly depending
on just where within the POS pixel we choose to evaluate it,
especially if the pixel is large or the target rotates rapidly. (We
cannot make the POS pixels arbitrarily small, since the program
runs very slowly if it must repeatedly generate fine-resolution
POS frames.) For a rapid rotator we might deal with this prob-
lem by evaluating F at four points on a 2 x 2 grid within the
POS pixel and then using the mean of these four function val-
ues. Betulia, however, rotates slowly enough that simply evalu-
ating F at the center of each POS pixel was sufficient.

The delay response function A(d, d;) for one sample per
baud is the square of a triangle function that has unit height

(A1)

(A2)
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Betulia: 2 samples per baud, 2 rows per baud
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Fig. 8. Response to a delta-function signal in delay for our Betulia images as a
function of the difference between the signal delay and the delay at the center
of the image row. The dashed line represents a hypothetical (and impossible)
matched response, with 100% sensitivity to any signal “within” the row’s de-
lay boundaries and 0% sensitivity to any signal “outside” those boundaries.
The solid line shows the actual response, a broad (£2.5 rows = £1.25 baud
lengths), weak (maximum height 9/16) function of delay. The breadth of the ac-
tual response means that within a given Doppler column, the signal in adjacent
image rows is significantly correlated. See Appendix A for further discussion.

and half-width b (Harmon, 2002); this results from convolving
a baud-length rectangular code element with a matched rectan-
gular filter, then squaring to obtain power. To obtain A for s
samples per baud we first sum s such triangle functions, with
the mth triangle function (0 < m < s — 1) centered at delay
dj +[m — (s — 1)/2](b/s). We then divide this sum by s and
square it:

2
152 fd—d; m—35L
Ad,d)=1-) A L 2 :
(. dj) :SZ < b s )}

m=0

(A.3)

where triangle function A(x) =1 — |x]| for |x| < 1 and O for
|x| > 1. (This result is valid to first order in the small quan-
tity fb: we ignore phase differences between different samples
within the same baud.) This response function is symmetric in
delay, with half-width [(3 — 1/s)/2]b; in other words, power
on the sky at delay d will contribute to all image rows whose
delay d; is no more than this half-width away from d. It fol-
lows that pixel values in adjacent rows are correlated with each
other: echo power that is sharply peaked in delay will produce
strong pixels in roughly x adjacent rows in the image. Our Be-
tulia images have y = 2, thus giving them a “double vision”
appearance in the delay dimension.

Putting all of this together, we have the delay-Doppler re-
sponse function:

R(f,d,0; fi,dj) = pcos" 0 ApossecO Y (f)
{ F(f, fi)Ad,d)) }
i Zj/F(f, finAad,dp) |

If we sum this expression over all image columns i and image
rows j—that is, if we add up all contributions to the image from

(A4)

incident power at frequency f and delay d—the factor in braces
sums to unity and we are left with the factors in front.

SHAPE uses this response function to map power from the
plane of the sky to cross section in delay-Doppler space when
creating simulated images (see Section 3.1.2). The correspond-
ing impulse response function for simulated CW spectra is the
same as Eq. (A.4) but with ¥ and A replaced by unity and no
j’-sum in the denominator.

A.2. Image calibration

Let us now consider the various contributions to a particu-
lar image pixel centered at ( f;, d;). Suppose for simplicity that
power density P (power per unit frequency per unit delay) in-
cident on the receiving telescope is uniform in frequency and
delay; this assumption will not affect our results. The received
power Pr “within” our pixel prior to data reduction is then just
PAf Ad. However, the signal in the actual reduced image dif-
fers from this expression, for two reasons. First, the code filter
Y (f) reduces the signal strength. Second, as can be seen in
Fig. 8 for our Betulia images, the delay response A(d,d;) is
a weak but broad function, mismatched to the nominal delay
resolution; the area under the actual curve is about 1.146 times
that under the matched (rectangular) curve. If we integrate the
product Y FA over all f and d, we find that the signal is ap-
proximately equal to Pr Y (f;)Z, where “baud filter” Z is given
by

S, 1,1
T\ 20 T 1252 T 3054 )1

For example, one sample per baud (s = x = 1) yields Z =2/3
(Harmon, 2002): each pixel has only 2/3 as much signal as if
it were 100% sensitive to all incident power within its delay-
Doppler boundaries and 0% sensitive to all incident power out-
side those boundaries. For our Betulia images (s = x = 2) we
instead have Z =55/48 ~ 1.146. When we double s and x we
halve the pixel height (and area), so we would naively expect to
halve the signal, but instead the signal only changes by a fac-
tor of [1.146Af (b/2)]/[(2/3)Afb] ~ 0.859. It remains almost
constant because the width of the delay response function A
increases rather than being halved.

When we take multiple samples per baud, we do not just pro-
duce correlated image rows whose pixels have stronger signal
than we might have expected; we also reduce the noise, since
our time series of voltage amplitudes is effectively smoothed,
with consecutive samples correlated with each other rather than
independent. This noise is assumed to be thermal noise due to
the receiver electronics, to stray scattering in the telescope op-
tics that allows in some thermal radiation from the ground, and
to the 3 K microwave background. The total “system temper-
ature” Tgys is roughly 20-30 K, and is measured regularly by
comparison with a calibrated reference noise source. It is pos-
sible to show that the expectation value of the noise power in a
single look is equal to the usual kTsys A f expression (which ap-
plies to CW observations) multiplied by “noise factor” n, where

25741
1= 7352

(A.5)

(A.6)
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For Betulia we have n = 3/4. The r.m.s. noise power fluctuation
in an image formed as the mean of Njooks independent looks is
just the expectation value nkTsys A f divided by the square root
of Niooks, With Njooks €qual to integration time T multiplied by
Af. This r.m.s. fluctuation is usually what we mean by “the
noise,” since the mean noise power is subtracted out when we
normalize our images during data reduction.

‘We now wish to use the above results to calibrate our image,
that is, to determine the cross section that corresponds to one
standard deviation of the noise. We define detectability D;; as
the ratio of the signal in our pixel to the r.m.s. noise fluctuation;
based on the discussion above, we can rearrange this definition
to obtain

nkTsys Af
PRY(fi)Z = D;j ————. AT
R (fl) ij m ( )
The radar equation tells us that
PrGrGgiio
Pr — —, A8
R T @n)3R? (A.8)

where Pr is transmitted power, Gr and Gy are the telescope
gain when transmitting and receiving, and R is the Earth-target
distance. We eliminate Pr from the preceding two equations,
solve for o, and then consider the case where D;; = 1:

@) R Tys (AF\Y*) 1
Urmsz 72 - .
PrGrGrA T Y(fi)Z

This is the cross section equivalent of the r.m.s. noise fluctu-
ation. (We have ignored speckle noise due to the echo.) The
factor within braces is the expression one would obtain for
CW spectra, while the factors that follow are specific to delay-
Doppler images. Since the variation in Y (f;) from column to
column is slow, we simply evaluate ¥ at the COM Doppler fre-
quency rather than computing a different value of oy, for each
column.

In reality, system temperature and gain are not constant dur-
ing a given Arecibo run: they vary significantly with telescope
pointing, due to the telescope’s unusual optics. They have been
tabulated as a function of telescope pointing using known celes-
tial flux standards (generally quasars). At one-second intervals
during the receive half of each run, we found Tyys and G g for
the pointing direction at that time, and also Gr for the pointing
direction RTT seconds earlier when the signal was transmitted.
To obtain the system temperature to be used in the numerator
of Eq. (A.9) for this run, we took the square root of the mean
of the squares of these individual Ty values (thus adding noise
in quadrature); to obtain the product of gains in the denomi-
nator, we took the unweighted mean of the individual GG
products.

(A9)

A.3. Signal-to-noise ratio for summed image subsets

The fact that the noise is effectively smoothed in an image
with s > 1 also implies that the noise in adjacent rows is cor-
related. This means that when we sum over an image subset
to obtain total cross section, the uncertainty on that sum is not
simply the single-pixel noise oy multiplied by the square root

of the number of pixels Npixels- Here we summarize the results
of a lengthy analysis. Two pixels that are in the same Doppler
column and are k delay rows apart have correlated noise if
|k| < kmax = Int[2(s — 1)(x/s)]—that is, if the delay differ-
ence between the two rows represents no more than 2(s — 1)
sampling intervals. In this case the correlation coefficient ry is
given by

re=[(@s+1-17)@s = i) @s —1-11)
—4(s+ 1= 1N (s =i (s = 1= 1N (s = 1= 1))/
(@@ +1)] .

where j = k(s/x) is the number of sampling intervals separat-
ing the two rows, and step function ®(x) =1 for x > 0 and 0
for x < 0. If we now sum the noise over a rectangular image
subset, and if we consider the simple (and typical) case where
the number of rows summed over is much larger than x, we
find that the r.m.s. value for the summed noise is Grms/ Npixels
multiplied by the square root of the sum of 7, from k = —kmax
to kmax. For Betulia this last factor is about 1.394.

Let us combine all of the results from this Appendix to see
what advantage there was in taking two samples per baud for
Betulia. Our images have s = x = 2. We have seen that the
signal in each pixel is weaker by a factor of 0.859 than if we
had used s = x = 1, but there are twice as many pixels to sum
(twice as many rows) to get the total cross section, giving us
a factor of 1.718. The noise in each pixel is only 3/4 what it
would have been at one sample per baud, but there are twice as
many pixels to sum over (for a factor of +/2 in the r.m.s. noise),
and the noise correlation between adjacent rows provides an
additional factor of 1.394; the product of these three values is
about 1.479. Hence the signal-to-noise ratio (SNR) is increased
by a factor of 1.718/1.479 ~ 1.16. While taking data at two
samples per baud does not improve delay resolution, and does
not increase SNR by the +/2 factor that doubling the number
of independent samples would provide, a 16% improvement in
SNR is still significant.

There is little advantage to be gained by taking more than
two samples per baud: one can show that the maximum SNR
improvement is about 19% for s >> 1. Since we already have
achieved most of this gain for s = 2, and since numerous sam-
ples per baud means large data files and slow data processing,
we seldom take more than two samples per baud in our imaging
experiments.

(A.10)

Appendix B. Penalty functions
B.1. Purpose

One purpose of penalty functions is to discourage SHAPE
from producing models that fit the data well (low reduced chi-
square) but are physically implausible—for example, models
that are shaped like sea urchins. Another purpose is to enforce
Occam’s razor by discouraging complex models (e.g., models
whose center of mass is far from the origin, implying nonuni-
form density) until such time as we have given up on finding a
simpler model that fits the data reasonably well.
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At the start of each stage (ellipsoid, harmonic, vertex) of
each modeling run we specify how many penalty functions
will be applied, which particular penalties they will be, and
what weight will be used for each penalty. The base value
of each penalty function is multiplied by the corresponding
penalty weight to give the complete penalty function. Since
these penalty functions are added to reduced chi-square to yield
the objective function, and since SHAPE tries to minimize the
objective function, it follows that a larger penalty weight more
strongly discourages the property being penalized.

B.2. Nonsmooth, concavity, and comdev penalties

The “nonsmooth” penalty discourages facet-scale topogra-
phy, that is, adjacent triangular facets that are not coplanar: its
base value is the mean over all model edges of (1 — cos 0)4,
where 6 is the angle between the outward unit normals to the
two facets adjoining a given edge. We are generally interested
in suppressing topographic structure at scales larger than the
facet size, but since such structure necessarily involves some
facet-scale structure, this penalty suppresses it.

The “concavity” penalty discourages facet-scale concavities:
its base value is the mean over all model edges of the follow-
ing quantity: (1 — cos#)? if the edge represents a concavity;
0 otherwise. To determine whether or not a given edge repre-
sents a concavity, we look at the two facets adjoining that edge,
construct a vector from one end of the edge to the far vertex
of facet 1, and take its dot product with the outward unit nor-
mal to facet 2. If the dot product is positive, these two facets
are tilted relative to each other in the concave sense. We are
generally interested in suppressing concavities that are substan-
tially larger than individual facets, but since such concavities
necessarily involve some facet-scale concavities, this penalty
suppresses them.

The “comdev” penalty tries to keep the model’s center of
mass (COM) close to the origin of body-fixed coordinates: its
base value is the squared length of the COM displacement (in
km?). The COM is actually the center of figure, since it is com-
puted assuming uniform density.

B.3. Inertiadev, inertiadev_uni, nonpa, and nonpa_uni
penalties

In order to understand how the next four penalty functions
work, we must consider two different ways of determining a
model’s principal moments of inertia. One method is dynami-
cal: we can choose as free parameters the three principal mo-
ments used in Euler’s equations to evolve the model’s spin
state. These three parameters—more precisely, any two ratios
of these three parameters—can be constrained by the data for
nonprincipal-axis (NPA) rotators but not for principal-axis (PA)
rotators. We will refer to these as the “dynamical principal mo-
ments”: Iqyn x, Iayn,y, and Igyn ;. The other method of obtaining
the principal moments is geometric: we obtain the inertia tensor
I by integrating over the model’s volume (e.g., Iy, is the inte-
gral over volume of —yz times density) and then diagonalize it.
This method works even for PA rotators, but of course SHAPE

cannot do the integrals unless it knows something about the
model’s density—so it assumes uniform density. Hence we will
refer to I as the “uniform-density inertia tensor” and to the
diagonal elements of the diagonalized tensor as the “uniform-
density principal moments.”

The “inertiadev” penalty is complex in that it does two things
to the model simultaneously. The base value of this penalty is
1 — A - B, where vectors A and B are defined as follows. The
three components of A are the diagonal elements of / divided
by the square root of the sum of squares of all nine elements
of I. (That sum is invariant under rotation—such as transfor-
mation to principal-axis coordinates.) A has unit length if [ is
diagonal, but is shorter otherwise. To obtain B—which is surely
a unit vector—we carry out the same procedure with the three
dynamical principal moments of inertia, treating them as the di-
agonal elements of a 3 x 3 diagonal tensor Igy,. The resulting
penalty function is zero if and only if A and B are identical—
that is, if and only if / is diagonal and its diagonal elements
have the same relative proportions as do the dynamical princi-
pal moments. It is positive for any other case.

If I is diagonal then the model’s principal axes coincide
with the body-fixed coordinate axes—a convenient but physi-
cally unimportant feature. Forcing the ratios of the dynamical
principal moments to match the ratios of the uniform-density
principal moments is more significant, as it means forcing the
model to spin like a uniform-density object. That is, it forces
the model’s density to be uniform. So, to summarize, the “in-
ertiadev” penalty forces the model to have uniform density and
to have its principal axes aligned with the body-fixed coordinate
axes.

This approach is meaningless for PA rotators, since the dy-
namical principal moments cannot be constrained for such ob-
jects. Instead we can use the “inertiadev_uni” penalty, where
“uni” stands for “uniform density.” This penalty ignores the
dynamical principal moments and simply forces the uniform-
density inertia tensor / to be diagonal. Put another way, “in-
ertiadev_uni” assumes a uniform-density target and forces its
principal axes to coincide with the three body-fixed coordi-
nate axes. The mathematical function definition is the same as
that given above for “inertiadev”” except that we replace the dy-
namical principal moments with the uniform-density principal
moments when constructing vector B. Applying this penalty is
important, as opposed to merely convenient, in that a PA ro-
tator should have its third principal axis coincide with its spin
axis (i.e., with the body-fixed z-axis).

The “nonpa” penalty discourages models in which the third
dynamical principal moment /gy, , is smaller than either of
the first two dynamical principal moments, since such models
would be NPA. To obtain its base value, we compute the frac-
tion by which the largest of the first two dynamical principal
moments of inertia exceeds the third dynamical principal mo-
ment, then add 0.01 to it, if this results in a negative number,
we reset the function to zero. In other words, “nonpa” drives
the first two dynamical principal moments to be at least 1%
smaller than the third. Again, this is a meaningless approach
for PA rotators, since the dynamical principal moments are
unconstrained for such objects. In such cases we instead use
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Table 10
Betulia normalized gravity field coefficients

Degree [ Order m Coefficient Cy,, Coefficient Sy,
0 0 1.0 -

1 0 0.0 -

1 1 0.0 0.0

2 0 —0.0660146 -

2 1 0.0 0.0

2 2 0.0265205 0.0

3 0 0.0036070 -

3 1 —0.0025358 —0.0023070
3 2 —0.0172129 0.0085840
3 3 0.0022822 —0.0280462
4 0 0.0142060 -

4 1 —0.0006590 —0.0005722
4 2 —0.0071511 0.0002485
4 3 0.0029706 0.0041749
4 4 —0.0015610 0.0014316

Notes. Betulia normalized gravity field coefficients through degree and order 4.
See text and Appendix C. A gravity field through degree and order 16 is avail-
able from the authors.

the “nonpa_uni” penalty, which is identical to “nonpa” except
that the uniform-density principal moments are intercompared
rather than the dynamical principal moments.

Appendix C. Gravity coefficients

Table 10 lists the Betulia gravity coefficients Cj;,, and Sp,
through degree ! = 4. These coefficients are normalized, as de-
fined in Kaula (2000), computed with respect to a normalizing
radius Ry = 2.686 km. The general form of the gravitational
field can be expressed as

o | RN
U=ZZ<?) Py (sin )
[=0 m=0

X [Cim cosmA + Sy sinmi], (C.1

where Cy,, are the normalized Legendre polynomials, ¢ is the
particle latitude, and A is the particle longitude in the body-fixed
frame.
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